检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔺旭东 耿世刚 单磊敬[3] 付献斌 刘佳 王春迎 郝龙腾 LIN Xudong;GENG Shigang;SHAN Leijing;FU Xianbin;LIU Jia;WANG Chunying;HAO Longteng(Department of Information Engineering,Hebei University of Environmental Engineering,Qinhuangdao 066102;Department of Environmental Science,Hebei University of Environmental Engineering,Qinhuangdao 066102;Rehabilitation Center of the Joint Logistic Support Force of the Chinese People′s Liberation Army in Beidaihe,Qinhuangdao 066100;Hebei Sailhero Environmental Protection Hi tech.,Ltd,Shijiazhuang 050035)
机构地区:[1]河北环境工程学院信息工程系,秦皇岛066102 [2]河北环境工程学院环境科学系,秦皇岛066102 [3]中国人民解放军联勤报障部队北戴河康复疗养中心,秦皇岛066100 [4]河北先河环保科技股份有限公司,石家庄050035
出 处:《环境科学学报》2019年第11期3692-3701,共10页Acta Scientiae Circumstantiae
基 金:河北省科技计划项目(No.16210348);河北省高等学校科学技术研究重点项目(No.ZD2018048);河北省教育厅人文社会科学研究重大课题攻关项目(No.ZD201710)
摘 要:污染物浓度预报是应对大气污染问题的重要手段.现有的模式类预报方法受限于排放源清单的准确性,而在污染物排放源短期少变的条件下,基于气象要素的统计类预报方法是一种更具实用性的方法.但现有统计类预报方法的计算模型输入量缺乏对气象要素累积效应的表征,以及对气象因素影响大气污染物聚散过程的表征,严重影响了预报的精度.为此,本文提出了一种着眼于改善计算模型输入量的统计类PM2.5浓度预报方法.该方法采用方位聚散因子作为计算模型输入量,既可表征出PM2.5累积与消散的过程,又考虑了气象要素在一定时段内的累积效应,为提高预报精度奠定了良好的基础.同时,通过BP神经网络训练,本方法在方位聚散因子与PM2.5浓度值之间建立起关联模型,从而完成对PM2.5浓度值的准确预报.Contaminant concentration forecast is an important means to deal with air pollution problems. Existing model-based forecasting methods are limited by the accuracy of source lists. Under the condition that the pollutant emission sources are stable during short terms, the statistical forecasting method based on meteorological elements is a more practical method. However, the input of the calculation model of the existing statistical forecasting method lacks the characterization of the cumulative effect of meteorological elements and the characterization of the atmospheric pollutants gathering process caused by meteorological factors, which affects the accuracy of the forecast seriously.To this end, a statistical PM2.5 concentration forecasting method that focuses on improving the input of computational models is proposed in the paper. The method uses the azimuth convergence-diffusion factor as the input of the computational model, which not only represents the process of PM2.5 accumulation and dissipation, but also considers the cumulative effect of meteorological elements in a certain period of time, which lays a good foundation for improving the prediction accuracy. Through the BP neural network training, the method establishes a correlation model between the azimuth convergence-diffusion factor and the PM2.5 concentration value, thus completing the accurate prediction of the PM2.5 concentration value.
关 键 词:PM2.5预报 京津冀 气象要素 方位聚散因子 BP神经网络
分 类 号:X513[环境科学与工程—环境工程] X32
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33