检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐姗姗[1] 颜超 高琳明[1] XU Shanshan;YAN Chao;GAO Linming(College of Information Science and Technology,Nanjing Forestry University,Nanjing Jiangsu 210037,China;College of Meteorology and Oceanography,National University of Defense Technology,Nanjing Jiangsu 211101,China)
机构地区:[1]南京林业大学信息科学技术学院,南京210037 [2]国防科技大学气象海洋学院,南京211101
出 处:《计算机应用》2019年第12期3450-3455,共6页journal of Computer Applications
基 金:国家重点研发计划项目(2016YFD0600101);国家自然科学基金资助项目(31770591)~~
摘 要:针对现有分析湖泊几何信息算法的二维图像湖泊轮廓提取精度低的问题,提出了一种基于三维卷积神经网络的湖泊提取算法。首先,基于平整度信息从激光扫描点云中定位出候选湖泊并对输入的候选区域点云进行体素化组织,作为神经网络的输入;同时,通过深度学习技术,从候选区域中过滤非湖泊区域;然后,基于方向链码算法从点云中提取湖泊的边缘并分析其几何形状信息。实验结果表明,所提算法在提取激光扫描点云中的湖泊精度可达到96.34%,与当前在二维图像中的湖泊提取算法相比,可对目标湖泊形状信息进行计算与分析,从而为湖泊监测与管理提供方便。Aiming at the low accuracy of lake contour extraction from two-dimensional images of the existing algorithms for analyzing the geometric information of lakes, a lake extraction algorithm based on three-dimensional convolutional neural network was proposed. Firstly, based on the flatness information, the candidate lakes were located from the laser scanning point clouds, and the candidate points were organized as voxels to be an input of the neural network. Meanwhile, the non-lake areas were filtered from candidate areas by the deep learning technique. Then, based on the chain-code algorithm, contours of lakes were extracted from point clouds and their geometry information was analyzed. The experimental results show that, the accuracy of the proposed algorithm in extracting lakes from laser scanning point clouds is 96.34%, and compared with the existing extraction algorithm for two-dimensional images, the proposed algorithm can calculate and analyze the shape information of lakes, which provides convenience for lake monitoring and management.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222