检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邱少明[1] 胡宏章 杜秀丽[1] 吕亚娜[1] QIU Shao-ming;HU Hong-zhang;DU Xiu-li;L Ya-na(Dalian University,Department of Information Engineering,Liaoning Dalian 116622,China)
机构地区:[1]大连大学信息工程学院
出 处:《现代防御技术》2019年第6期61-67,87,共8页Modern Defence Technology
摘 要:针对动态火力分配算法耗时长,而传统的蝙蝠算法寻优精度不高等问题,提出了一种基于动态差分改进的蝙蝠算法。该算法首先通过放宽部分约束条件加快生成初始解,然后将动态差分进化算法中的差分变异机制融入到蝙蝠算法中,再利用惩罚函数确保生成的解满足约束条件,最后利用蝙蝠种群进行解的迭代寻优。仿真结果表明,与蝙蝠算法、遗传算法、粒子群算法相比,改进的算法有较高的收敛精度和较快的收敛速率,且更适合应用在较大规模的火力分配问题中。Aiming at the long allocation of dynamic fire distribution algorithm,an improved bat algorithm based on dynamic differential evolution is proposed. Firstly,the algorithm speeds up the generation of initial solution by relaxing some constraints. Secondly,the differential mutation mechanism in the dynamic differential evolution algorithm is integrated into the bat algorithm. Then the penalty function is used to ensure that the generated solution satisfies the constraints. Finally,the bat population is used to perform iterative optimization. The simulation results show that the improved algorithm has faster convergence speed and higher convergence precision compared with the bat algorithm,genetic algorithm and particle swarm optimization algorithm. The advantage is distinct when the method is applicated in largescale firepower distribution problems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222