检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹欣红 赵世燕 陈晓云[1] YIN Xin-hong;ZHAO Shi-yan;CHEN Xiao-yun(School of Information Science and Engineering,Lanzhou University,Lanzhou 730000,China)
机构地区:[1]兰州大学信息科学与工程学院
出 处:《计算机科学》2019年第12期45-55,共11页Computer Science
摘 要:复杂网络是从大量现实存在的复杂系统中抽象得到的,网络的整体功能体现在网络中节点间的相互作用上,社团结构是其关键性结构特征。社团对应于系统的功能模块,提取网络的功能模块有助于深层探究复杂网络的内部规律,从复杂网络中检测社团结构具有重要的理论研究意义和实用价值。因此,很多研究者对社团检测进行了研究,进而提出了很多社团检测算法,如基于模块度优化的社团检测算法、基于标签传播的社团检测算法、基于随机游走的社团检测算法等。在对这些算法进行充分研究的基础上,通过模拟随机游走的过程,结合信号传播过程中随着传播距离的增大,信号量会缓慢衰减的思想,提出了一种带偏置的信号传播机制的随机游走的社团检测算法。该算法从网络中选取一个节点作为信号源,随机选择与其相邻的节点作为下一跳节点,将衰减后的信号量传递到该节点,依次迭代并传递信号。考虑到信号的衰减,为每条边设置偏置,对信号传播过程进行限定。通过模拟信号的传播,将网络的每个顶点作为信号源来重复这一过程,得到传播矩阵。然后,为每个顶点添加自环,并结合邻接矩阵以及顶点间的相似性,形成具有新属性的相似性矩阵。根据新属性矩阵和传播矩阵为每个顶点构造属性。最后,使用k-means算法进行聚类,得到高质量的社团结构。为了验证该方法的性能,在10个实际网络数据集以及不同规模的人工合成网络上进行实验。实验结果充分证明,所提算法能够从网络中提取出高质量的社团结构,从而有效地为社团检测领域提供依据。Complex networks are abstracted from various complex systems.The overall function is reflected in the interaction among nodes,and community structure is one of the most significant structural properties presented in many networks.Generally,the community corresponds to the functional modules of the system.Therefore,extracting these communities of the network helps us to explore the internal rules,and it has important theoretical research significance and practical value for community detection of complex networks.As a result,it is paid attention widely by many resear-chers,and many community-detection algorithms are proposed,such as the algorithms based on modularity optimization,label propagation,and random walk.In the process of signal propagation,as the propagation distance increases,the signal quantity will decay slowly.On the basis of the full study of these algorithms,by simulating the process of random walk,a community detection algorithm with random walk based on the signal propagation mechanism with bias was proposed.The algorithm selects a node from the network as the signal source,chooses the neighbor node randomly as the next hop node,transmits the attenuated semaphore to the node,and iteratively selects the next hop node and transmits the signal randomly.Considering the attenuation of the signal,an attenuation factor is attached to each edge to constrain the signal propagation process.Through the propagation of the analog signal,each process of the network is repeated as a signal source to obtain a propagation matrix.Then,the self-loop is added for each vertex.By considering the similarity matrix with new attributes between the adjacency matrix and the similarity among vertices,attributes for each vertex are constructed based on the new attribute matrix and propagation matrix.Finally,k-means algorithm is used for clustering to obtain high-quality community structure.In the end,k-means algorithm is used for clustering to obtain high-quality community structure with the minimum cost.In order to verify t
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145