检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘鹏 艾施荣[3] 杨普香[2] 李文金[2] 熊爱华[1] 童阳 胡潇 吴瑞梅[1] LIU Peng;AI Shirong;YANG Puxiang;LI Wenjin;XIONG Aihua;TONG Yang;HU Xiao;WU Ruimei(College of Engineering,Jiangxi Agricultural University,Nanchang 330045,China;Sericulture and Tea Research Institute of Jiangxi Province,Nanchang 330203,China;College of Software,Jiangxi Agricultural University,Nanchang 330045,China)
机构地区:[1]江西农业大学工学院,江西南昌330045 [2]江西省蚕桑茶叶研究所,江西南昌330203 [3]江西农业大学软件学院,江西南昌330045
出 处:《茶叶科学》2019年第6期715-722,共8页Journal of Tea Science
基 金:国家自然科学基金项目(31460315);江西省重点研发计划项目(20171ACF60004);江西省现代农业产业技术体系专项资金(JXARS-02)
摘 要:为提高不同海拔茶叶品质近红外光谱技术鉴别方法的精度,提出采用局部线性嵌入法(LLE)和拉普拉斯特征映射法(LE)非线性流形学习方法对近红外光谱数据进行降维处理,并与基于核函数的非线性(KPCA)及线性(PCA)降维方法比较,建立不同海拔茶叶品质的近红外光谱LSSVM鉴别模型。不同降维方法可视化结果表明,KPCA和PCA方法的数据点离散性较大,400~800 m和800~1200 m的样本点重叠较多,而非线性流形学习方法能将同一类样本点在三维空间很好地聚集在一起,不同海拔的茶叶能较好地区分开,且聚集效果方面LE方法好于LLE方法。模型性能表明,LE_LSSVM模型性能最佳,预测集总体判别率、Kappa系数分别为100%和1.00;相比于PCA_LSSVM、KPCA_LSSVM和LLE_LSSVM,模型预测集总体判别率分别提高1.7%、1.7%、3.3%;Kappa系数分别提高0.025、0.03、0.05。研究表明,LE等非线性流形学习降维方法在近红外光谱数据降维、简化模型复杂度、提高模型精度方面效果很好,为茶叶品质快速检测方法研究提供了一种新思路。In order to improve the accuracy of near infrared(NIR)spectroscopy identification methods for tea at different altitude,the non-linear manifold dimensionality reduction methods of locally linear embedding(LLE)and laplacian eigenmaps(LE)were used to reduce the dimension of NIR spectral data,and compared with non-linear(KPCA)and linear(PCA)dimensional reduction methods.Discrimination models were established for tea at different altitude based on different dimensional reduction methods and least squares support vector machine(LSSVM)algorithm.Visualization of different dimensionality reduction results show that data processed by KPCA and PCA methods were more discrete.In particular,there were more overlaps between 400-800 m and 800-1200 m samples.However,the same kind of sample points could be gathered well in three-dimensional space by the nonlinear manifold dimensionality reduction methods can.Tea at different altitude could be easily separated and the aggregation effect of the LE was better than that of the LLE.The results of models indicate the LE_LSSVM model had the best performance,with the prediction set accuracy and Kappa value of 100%and 1.00 respectively.Compared with PCA_LSSVM,KPCA_LSSVM and LLE_LSSVM models,the accuracy of prediction set was improved by 1.7%,1.7%,3.3%and Kappa values increased by 0.025,0.03,and 0.05.The results show that LE and other nonlinear manifold dimensionality reduction methods were effective in reducing dimension of near infrared spectral data,simplifying model complexity,and improving model precision.The study provides a new means for rapid detecting for tea quality research.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145