检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨博[1,2,3] 熊章强 张大洲[1,2,3] 杨振涛 YANG Bo;XIONG Zhangqiang;ZHANG Dazhou;YANG Zhentao(Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring,Ministry of Education,Central South University,Changsha,Hunan 410083,China;Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration,Changsha,Hunan 410083,China;School of Geosciences and Info-Physics,Central South University,Changsha,Hunan 410083,China;Department of Earth and Space Sciences,Southern University of Sciences and Technology,Shen-zhen,Guangdong 518055,China)
机构地区:[1]中南大学有色金属成矿预测与地质环境监测教育部重点实验室,湖南长沙410083 [2]有色资源与地质灾害探查湖南省重点实验室,湖南长沙410083 [3]中南大学地球科学与信息物理学院,湖南长沙410083 [4]南方科技大学地球与空间科学系,广东深圳518055
出 处:《石油地球物理勘探》2019年第6期1217-1227,I0008,共12页Oil Geophysical Prospecting
基 金:国家自然科学基金项目“近地表三维复杂介质中瑞雷波传播特性研究”(41274123);国家重点研发计划“深地资源勘查开采”重点专项“深部资源勘查数据处理、解释软件平台开发及综合示范”(2018YFC0603600);中南大学中央高校基本科研业务费专项资金资助项目“快速多模式瑞雷面波频散曲线正反演研究”(502211928)联合资助
摘 要:为了提高瑞雷面波频散曲线的反演精度,减少反演过程中的多解性,获取更准确的地下横波速度结构,本文从反演算法入手,对基本的粒子群算法进行改进,提出了一种能同步提高全局和局部搜索能力的自适应混沌遗传粒子群算法(ACGPSO):即先采用自适应惯性权重,并设置粒子的节速度,再引入遗传算法的交叉和变异操作及单维全分量的混沌局部搜索。利用该算法对理论模型的无噪和含噪基阶频散曲线进行反演,且针对含噪数据加入二阶与三阶频散曲线进行联合反演。所得反演结果与常规粒子群算法反演结果的对比表明:ACGPSO算法具有更好的稳定性和抗噪性,且基于该算法的联合反演能有效降低解的多解性,显著提高解的精度。对实际数据所做的两步法反演的效果进一步验证了该算法的适用性。In order to improve the accuracy of Rayleigh surface wave dispersion curve inversion,reduce multi-solutions in the inversion,and obtain a more accurate subsurface shear wave velocity,we propose an adaptive chaotic genetic particle swarm optimization algorithm(ACGPSO)which can simultaneously improve the global and local search capabilities.ACGPSO adopts adaptive inertia weights,sets knots of particles,and introduces the crossover and mutation operation of genetic algorithm,and the single dimensional full component chaotic local search.With the proposed algorithm,fundamental dispersion curves of a theoretical geological model without noise and with noise are inverted,and the first-order and second-order dispersion curves with noise are jointly inverted.Based on the numerical test,the proposed ACGPSO algorithm has better stability and better noise-resistance than conventional algorithms,and its joint inversion can effectively reduce multi-solutions.Real data tests prove the applicability of the proposed algorithm.
关 键 词:瑞雷面波 频散曲线 粒子群算法 自适应混沌遗传粒子群算法 联合反演
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104