基于Dense U-net方法的眼底彩色照片图像血管分割研究  被引量:4

Research oncolor fundus image blood vessel segmentation based on Dense U-net

在线阅读下载全文

作  者:张亮军 承垠林 马梦楠 马丽 周毅[3] ZHANG Liangjun;CHENG Yinlin;MA Mengnan;MA Li;ZHOU Yi(School of Biomedical Engineering,Sun Yat-Sen University,Guangzhou 510006,China;Zhongshan Ophthalmic Center,Sun Yat-Sen University,Guangzhou 510080;Department of Biomedical Engineering,Zhongshan School of Medicine,Sun Yat-Sen University,Guangzhou 510080)

机构地区:[1]中山大学生物医学工程学院,广州510006 [2]中山大学中山眼科中心,广州510080 [3]中山大学中山医学院医学信息教研室,广州510080

出  处:《生物医学工程研究》2019年第4期397-402,共6页Journal Of Biomedical Engineering Research

基  金:国家重点研发计划项目(2018YFC0116902);国家自然科学基金资助项目(61876194);中央高校基本科研业务费专项资金资助项目(19YKYJS52);NSFC-广东大数据科学中心联合基金资助项目(U1611261);广州市科技计划项目(201604020016)

摘  要:眼底彩色照片图像血管分析可用于评估和监测各种眼科疾病,对患者提前干预治疗提供指导,减少致盲风险,具有十分重要的临床意义。目前眼底血管分割的算法及模型,对于细小血管如视网膜毛细血管的分割效果仍有待提高。本研究针对此问题提出Dense U-net网络架构,该模型在U-net网络中加入了Dense Block架构,可以提高细小血管的分割准确率,同时该算法模型在DRIVE(digital retinal images of vessel extration,DRIVE)公开数据集上进行了实验,相比现有的算法,本研究模型的准确率、灵敏度、特异性分别为0.9532、0.7977、0.9759,其中灵敏度的提高可以使得算法模型更准确地识别并分割出细小血管。Retinal fundus image analysis can be used to assess and monitor various ophthalmic diseases,provide guidance for patients with advanced intervention,and reduce the risk of blindness,which has a great clinical significance.At present,the algorithm and model for retinal fundus segmentation for small blood vessels such as retinal capillaries remain to be improved.We proposed the Dense U-net network architecture for this problem.This model added the Dense Block framework to the U-net network,which can improve the segmentation precision of small blood vessels.At the same time,this algorithm model has tested on the DRIVE public dataset,compared with the existing algorithms,the proposed method achieved higher accuracy,sensitivity,and specificity of 0.9532,0.7977,0.9759.The improvement of accuracy allows the algorithm model to identify and segment small blood vessels more accurately.

关 键 词:眼底图像 U-net 血管分割 神经网络 深度学习 

分 类 号:R318[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象