基于高阶动态贝叶斯网络嵌入的路面异常检测算法  被引量:4

Pavement Anomaly Detection Algorithm Based on High-order Dynamic Bayesian Network Embedding

在线阅读下载全文

作  者:李博[1] 张洪刚[1] LI Bo;ZHANG Honggang(School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China)

机构地区:[1]北京邮电大学信息与通信工程学院

出  处:《华南理工大学学报(自然科学版)》2020年第1期51-59,共9页Journal of South China University of Technology(Natural Science Edition)

基  金:国家自然科学基金青年基金资助项目(61601042)~~

摘  要:路面异常会给驾驶员与行人带来不便,更可能引发交通事故。提出了一种通过传感器时序信号数据进行路面异常检测的算法。针对行驶过程中采集的不同传感信号之间具有较强的高阶时序相关性的问题,通过构建高阶动态贝叶斯网络分类器来实现异常检测。首先,通过相关性分析和Granger因果分析分别构建初始时刻网络和转移网络的初始网络;然后,将传感信号进行小波分解,通过卷积神经元网络实现网络嵌入学习;最后,利用网络嵌入进行链路预测,结合MDL评分实现网络修正学习算法。实验结果表明,该检测算法相对于传统的时间序列分类方法,在分析时序相关性较大的信号数据时,具有更低的误检率和漏检率、更高的F1值,并且更加鲁棒。Pavement anomalies can bring inconvenience to drivers and passengers,and even cause traffic accidents.A pavement anomaly detection algorithm based on sensor time series data was proposed.Considering the problem that sensing signals collected during driving are strongly high-order sequential correlative,high-order dynamic Bayesian network classifier was constructed to realize the anomalies detection.Firstly,correlation analysis and Granger causality test were used to initialize the network structure.Secondly,the sensing signals were decomposed by wavelet transform,and convolution neural network was used to realize network embedding.Finally,link prediction with minimal description length was used to optimize the network structure.The results show that,compared with the traditional method of time series classification,the proposed method can reduce fallout rate and missing rate,and increase F1 score on the sequential correlative signals,and thus is more robust.

关 键 词:动态贝叶斯网络 路面异常检测算法 网络嵌入 相关性分析 GRANGER因果分析 时间序列分类 

分 类 号:TN911.22[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象