检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵运弢[1,2] 崔文杰 左甜甜 徐春雨 ZHAO Yun-tao;CUI Wen-jie;ZUO Tian-tian;XU Chun-yu(School of Information Science and Engineering,Shenyang Institute of Technology,Shenyang 110159,China;School of Information Science and Engineering,Northeastern University,Shenyang 110819,China)
机构地区:[1]沈阳理工大学信息科学与工程学院,沈阳110159 [2]东北大学信息科学与工程学院,沈阳110819
出 处:《火力与指挥控制》2019年第12期132-135,141,共5页Fire Control & Command Control
基 金:国家自然科学基金(61501308);中国博士后基金(2016M590234);辽宁省教育厅一般基金(LG201611);沈阳市科技计划基金资助项目(18-013-0-32)
摘 要:针对移动网络故障反馈与故障分类的准确率问题,提出一种基于k-NN的多分类器提升树算法,该算法采用k近邻对特征向量空间划分,结合adboost误差函数和迭代算法,实现多分类器决策判别,并利用R语言可视化方法的关系数矩阵提取和筛选出投诉/故障映射主属性,进而建立基于基站退服、覆盖盲点、非网络原因3类故障投诉关联分析及预测模型。实验结果表明,与C50决策树、RIPPER分类规则及SVM比较,在网络故障关联预测方面新算法的分类准确率提升约2%~10%。According to the accuracy problems of mobile networks fault feedback and fault classification,multiple classifier boosting tree algorithm based on k-NN is put forward.The algorithm uses k neighboring to feature vector spacial classifcation and combines adboost error function and iterative algorithm to realize classifier decision discrimination,the model adopts the relation matrix of R language visualization method to extract and select the main attributes of complaint/fault map.Furthermore,the model uses the boosting method to realize the decision of multiple classifiers,and establishes three kinds including the base station retirement service,coverage blind spot and nonnetwork cause.The model fully expresses the cause of the user’s complaints and realizes the effective analysis and prediction of the relationship between operation complaints and the cause of the failure.The experimental results show that the classification accuracy of the model is about 2%~10%higher than that of C50 decision tree,RIPPER and SVM.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3