检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王显鹏[1,2] 王赞 WANG Xian-peng;WANG Zan(Key Laboratory of Data Analytics and Optimization for Smart Industry MOE,Northeastern University,Shenyang 110004,China;Liaoning Key Laboratory of Manufacturing System and Logistics,Shenyang 110004,China;Liaoning Engineering Laboratory of Operation Analytics and Optimization for Smart Industry,Shenyang 110004,China)
机构地区:[1]东北大学智能工业数据解析与优化教育部重点实验室,沈阳110004 [2]辽宁省制造系统与物流优化重点实验室,沈阳110004 [3]辽宁省智能工业数据解析与优化工程实验室,沈阳110004
出 处:《控制与决策》2019年第12期2713-2720,共8页Control and Decision
基 金:国家自然科学基金面上项目(61573086);国家自然科学基金重大项目(71790614)
摘 要:针对连退生产过程中带钢质量波动大和生产能耗过大的问题,基于数据解析方法构建带钢质量的预测模型,进而建立连退生产过程多因子操作优化模型.该模型的任务是求得一个最优工艺参数设定方案,使得模型中所包含的两个相互影响但并不冲突的目标能够实现同时最优化.针对该问题,提出一种改进的自适应多因子进化算法(AdaMFEA),将不同优化目标作为不同类别因子,通过父代解在不同因子上的性能评价指标决定子代解的搜索方向.为了改进算法的鲁棒性和搜索效率,算法使用多种交叉算子,并基于各算子的搜索性能分析提出多种交叉算子的自适应选择机制;同时提出基于回溯直线搜索和拟牛顿法的个体学习策略,对个体进行局部搜索.基于Benchmark问题的实验结果表明,AdaMFEA能够有效提升传统多因子进化算法(MFEA)的求解效率;基于实际工业问题的实验结果表明,AdaMFEA可有效求解连退生产过程多因子操作优化问题,实现多个非冲突目标在一个种群的进化过程中同时达到最优.To deal with the fluctuations of strip quality and excessive energy consumption in continuous annealing production process, this paper firstly establishes a prediction model for strip quality based on data analytics and then builds a multifactorial operation optimization model. The task of the model is to achieve an optimal parameter setting so that the two optimization objectives, which interact but do not conflict with each other, can be optimized simultaneously.To solve this model, an adapive multifactorial evolutionary algorithm(AdaMFEA) is proposed. The algorithm regards different optimization objectives as different categories of factors. The evaluation and search directions of individuals are determined by the information transmission of factors from parents. To imporve the robustness and search efficiency,multiple crossover operators are adopted in the algoirthm and an adaptive selection strategy for these operators is designed according to their search results. Meanwhile, an individual learning strategy based on the backtracking linear search and the quasi-Newton method is also proposed. The experimental results based on the Benchmark problem show that the AdaMFEA can effectively improve the efficiency of the traditional multifactorial evolutionary algorithms(MFEA). The experimental results based on practical industrial problems show that the AdaMFEA can effectively solve the multifactorial operation optimization problem in the continuous annealing production process, and achieve the simultaneous optimization of multiple non-conflicting objectives in the evolution of a population.
关 键 词:连续退火 数据解析 进化集成学习 多因子优化 操作优化 自适应多因子进化算法
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222