基于警报信号和D-S证据理论的风电机组故障诊断  被引量:14

FAULT DIAGNOSIS OF WIND TURBINE BASED ON ALARM SIGNALS AND D-S EVIDENCE THEORY

在线阅读下载全文

作  者:叶春霖 邱颖宁[1] 冯延晖[1] Ye Chunlin;Qiu Yingning;Feng Yanhui(School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)

机构地区:[1]南京理工大学能源与动力工程学院

出  处:《太阳能学报》2019年第12期3613-3620,共8页Acta Energiae Solaris Sinica

基  金:国家自然科学基金(51505225);江苏省自然科学基金(BK20131350);江苏省六大人才高峰(ZBZZ-045);中央高校基本科研业务费专项(30915011324)

摘  要:数据采集与监视控制系统(SCADA)储存了风电机组大量的警报信号,这些警报信号对故障类型具有一定的指示作用。为了及时有效地检测出风电机组故障,提出一种基于低频SCADA警报信号和D-S证据理论的风电机组故障诊断方法。首先从维修记录中提取故障类型构建辨识框架,然后选取故障当天触发的所有警报信号作为证据源,最后基于改进的D-S理论进行信息融合实现故障诊断。验证结果表明,该方法可以实现风电机组故障的有效诊断,为风电机组故障诊断提供了一种新的思路。Wind turbine fault diagnosis is important to improve wind turbine reliability and reduce the capital cost of wind power system.The Supervisory Control and Data Acquisition(SCADA)systems contain a large number of wind turbine alarm signals indicating certain fault types.In order to diagnose the wind turbine fault quickly and effectively,a new method of fault diagnosis based on SCADA alarm signals and D-S evidence theory is proposed in the paper.Firstly,the identification frame is constructed based on the fault types which are extracted from the maintenance records.Next,all the alarm signals triggered during the occurrence of faults are extracted as the source of the evidence.Finally,the information fusion based on the improved D-S theory is utilized to realize the fault diagnosis.The results show that the method based on D-S theory is feasible and effective in wind turbine fault diagnosis which provides a new idea for wind turbine fault diagnosis.

关 键 词:风电机组 SCADA警报信号 D-S证据理论 贝叶斯定理 故障诊断 

分 类 号:TM315[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象