检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈文龙 候勇 李楠 钟成[1] 阿木拉堵 陈晨[3] 孙技星 李卉[3] CHEN Wen-long;HOU Yong;LI Nan;ZHONG Cheng;AMU La-du;CHEN Chen;SUN Ji-xing;LI Hui(Three Gorges Research Center for Geohazards of Ministry of Education,China Uni versity of Geosciences,Wuhan 430074,China;Prov incial Surveying&Mapping Production Archives of Hubei(Provincial Geographie Information Data Exchange Center of Hubei),Wuhan 430074,China;School of Eath Sciences,China University of Geosciences,Wuhan 430074,China)
机构地区:[1]中国地质大学(武汉)教育部长江三峡库区地质灾害研究中心,武汉430074 [2]湖北省测绘成果档案馆(湖北省地理信息数据交换中心),武汉430074 [3]中国地质大学(武汉)地球科学学院,武汉430074
出 处:《长江科学院院报》2020年第1期166-171,共6页Journal of Changjiang River Scientific Research Institute
基 金:国家自然科学基金面上项目(41772352);中央高校基本科研业务费专项资助项目(CUGQYZX1746);长江科学院开放研究基金资助项目(CKWV2018485/KY)
摘 要:2015年尼泊尔地震以其强大的破坏力诱发了许多滑坡,对居民生命安全、道路房屋等造成极大的威胁,更准确快速的震后滑坡制图对救灾行动起着至关重要的作用。为了解决遥感传统像素级的变化检测方法的结果中大量过度识别,以尼泊尔首都加德满都为研究区,首先利用震前震后两期Landsat-8影像进行主成分变换,然后对变换后包含丰富特征信息的第一主成分(PC1)影像作变化检测,最后利用震后影像的第3主成分、NDVI(Normalized Difference Vegetation Index)、坡度等特征去除变化检测结果中的非滑坡地物。目视解译成果验证表明:基于主成分变换的滑坡识别方法能将研究区93.0%的滑坡识别出来,识别效果较好;滑坡主要发生在研究区东北方向的Sun Koshi河谷一带,主要地形坡度为[20°,50°)。提出的方法能较好地应用于地震引起的大范围滑坡识别,为震后救援和重建工作提供有力帮助。The earthquake of Nepal in 2015 and its aftershocks caused many landslides with its enormous destruction posing huge potential threats to residential lives and properties in the affected regions.Rapid and accurate detection of post-earthquake landslide is in urgent demand.Traditional pixel-based change detection methods,however,delivered a large amount of over-recognized objects.In view of this,a principal component analysis(PCA)based change detection method was proposed to recognize post-earthquake landslides.Katmandu,the capital and largest city of Nepal,was selected as the study area.First of all,to remove noise and abundant information,an orthogonal transformation was applied to before-earthquake and post-earthquake Landsat-8 images of Katmandu respectively.In subsequence,converted set of features,as the first principal component(PC1),was used for change detection.Last but not the least,non-landslides were eliminated by NDVI,PC3 and slope feature from previous results.Validation of the detected results with high-resolution images from Google Earth shows that the proposed method is able to identify landslides with relatively high accuracy(93.0%).And it also proves the applicability of Landsat-8 satellite imagery for landslide mapping with its multispectral information.The post-earthquake landslides are generally found in areas of large surface slopes(between 20°and 50°)of the Sun Koshi Valley,which is in the Northeast of the study area.The research findings suggest that the proposed method is effective in identifying post-earthquake landslides,thus assisting post-earthquake rescue and reconstruction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229