检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:白美丽 万韬阮 汤汶[1,3] 朱欣娟 薛涛 BAI Meili;WAN Taoruan;TANG Wen;ZHU Xinjuan;XUE Tao(Shaanxi Key Laboratory of Clothing Intelligence,School of Computer Science,Xi′an Polytechnic University,Xi′an 710048,China;Faulty of Engineering and Informatics,University of Bradford,Bradford BD71DP,United Kingdom;Faculty of Science and Technology,Bournemouth University,Poole BH125BB,United Kingdom)
机构地区:[1]西安工程大学计算机科学学院/陕西省服装设计智能化重点实验室,陕西西安710048 [2]布拉德福德大学工程与信息学院,英国布拉德福德BD71DP [3]伯恩茅斯大学科学与工程技术学院,英国伯恩茅斯BH125BB
出 处:《纺织高校基础科学学报》2019年第4期385-392,410,共9页Basic Sciences Journal of Textile Universities
基 金:陕西省科技厅自然科学基金(2016JZ026);陕西省科技厅国际科技合作与交流计划(2016KW-043)
摘 要:针对现有的服装解析算法在复杂背景下分割准确率较低,依赖姿态估计等问题,提出一种基于深度卷积神经网络的自监督服装解析方法(Deeplabv2-SSL),即在Deeplabv2网络中注入一种自监督的结构敏感学习算法。新的算法在训练过程中不需要标注任何人体关节信息,直接从像素标签中学习人体更高层次的信息,利用学习到的人体关节信息更好地定位服装分割的区域,降低了姿态估计过程中的损失。实验表明,Deeplabv2-SSL网络可以有效地解析服装中人体的个别部位以及服装区域。测试过程中总体像素精度大约83.37%,平均像素精度大约52.53%,较其他语义分割模型性能更佳。Current clothing parsing methods have low segmentation accuracy and rely too much on human posture estimation.In this paper,a self-supervised clothing analysis method based on deep convolutional neural network,Deeplabv2-SSL,is proposed,in which a self-supervised structure-sensitive learning algorithm(SSL)is injected into Deeplabv2 network.No human joint information needs to be labeled during the training process,and the higher-level information of human body can be learned directly from the pixel label.The human joint information can be used to better locate the garment segmentation area to reduce the loss in the pose estimation process.Experiments show that the Deeplabv2-SSL network can effectively analyze individual parts of human body as well as the clothing area in human clothing.The overall pixel accuracy is about 83.37%and the average pixel accuracy is about 52.53%during the testing process,which is improved compared with the other two methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3