基于混合策略改进的果蝇优化算法  被引量:5

Mixed strategy based improved fruit fly optimization algorithm

在线阅读下载全文

作  者:李良光[1] 朱丽 邢丽坤[1] LI Liang-guang;ZHU Li;XING Li-kun(College of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan 232001,China)

机构地区:[1]安徽理工大学电气与信息工程学院

出  处:《计算机工程与设计》2020年第1期139-144,共6页Computer Engineering and Design

摘  要:针对基本果蝇优化算法收敛精度不高、容易陷入局部最优和收敛速度慢的问题,提出一种基于混合策略改进的果蝇优化算法(MSFOA)。受鲸鱼捕食猎物的启发,在对个体历史最优位置的更新中,采用新的组合搜索的方法,加快果蝇搜索迭代速度;在更新后的位置公式中引入自适应权重系数,提高算法的优化精度;当达到局部收敛状态时,结合多尺度高斯变异算子解决局部最优的限制。采用6个测试函数的仿真结果表明,MSFOA算法相比其它算法具有更快的收敛速度和较高的寻优精度。Aiming at the problems that the basic fruit fly optimization algorithm has low convergence precision and convergence speed,and that it is easy to fall into local optimum,a fruit fly optimization algorithm based on hybrid strategy(MSFOA)was proposed.Inspired by the whale prey predators,in the update of the individual’s historical optimal position,the new combined search method was adopted to accelerate the speed of fruit fly search iteration.The adaptive weight coefficient was introduced in the updated position formula to improve the algorithm optimization accuracy.When reaching the local convergence state,the multi-scale Gaussian mutation operator was combined to solve the local optimal limitation.Simulation results of six test functions show that the proposed MSFOA algorithm has higher convergence speed and better precision than other algorithms.

关 键 词:果蝇优化算法 自适应 变异算子 组合搜索 高斯分布 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象