检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋占峰[1] 王健 李军[1] SONG Zhanfeng;WANG Jian;LI Jun(School of Civil Engineering,Central South University,Changsha 410075,China)
机构地区:[1]中南大学土木工程学院
出 处:《西南交通大学学报》2020年第1期144-149,共6页Journal of Southwest Jiaotong University
基 金:国家自然科学基金(51678574)
摘 要:为了由测量点识别既有线路中的缓和曲线参数,研究了基于参数方程的缓和曲线正交拟合迭代优化方法.首先,通过特征值分析,阐明了由于病态性的存在,在迭代过程中,常规的Gauss-Newton(GN)算法会发散.其次,提出了双目标优化模型,将GN算法与最速下降法结合,确定了正交拟合缓和曲线的Levenberg-Marquardt(LM)算法.同时提出了在寻优过程中,评估当前迭代位置距离最优位置的远近来动态设置LM参数.最后以一段缓和曲线的实测点为例,随机取样了5000例初值,采用蒙特卡罗方法对比了GN算法和LM算法拟合缓合曲线的性能.试验结果表明:GN算法拟合缓合曲线不收敛;对于不同的初始值,LM算法都收敛到相同的最优值,体现了LM算法具有良好的稳健性;LM算法的迭代次数最少为5次,最大为50次,平均为16.8次,迭代次数和初值与最优值位置的远近相关.To identify the parameters of transition curves in as-built alignments by measured points,orthogonal least-squares fitting is studied on the basis of the parameter equation of transition curves.First,eigenvalue analysis has clarified that the Gauss-Newton(GN)algorithm usually fails to converge because of the existence of the ill-condition.Next,a bi-objective optimization model is proposed and the Levenberg-Marquardt(LM)algorithm combining the GN algorithm with the steepest descent method is constructed to fit a transition curve to points orthogonally.The LM parameter is updated dynamically during iterations according to the evaluation of the distance between the current and the optimum locations.Finally,Monte Carlo simulations are employed to test the performances of the GN and LM algorithms with measured points and the same 5000 initial values.Experimental results show that the GN algorithm diverges while the LM algorithm converges to the same optimum under different initial values.The number of iterations,with an average of 16.8 times and the minimum of 5 times and the maximum of 50 times,is related to the distance between the initial and the optimum locations.The LM algorithm shows a better robustness than the GN algorithm.
关 键 词:缓和曲线拟合 正交最小二乘 LEVENBERG-MARQUARDT算法 Gauss-Newton算法 最速下降法
分 类 号:U212.3[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124