检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:禹建丽 谷丰盈 YU Jian-li;GU Feng-ying(School of Management Engineering,Zhengzhou University of Aeronautics,Zhengzhou 450046,China)
机构地区:[1]郑州航空工业管理学院管理工程学院
出 处:《模糊系统与数学》2019年第6期151-160,共10页Fuzzy Systems and Mathematics
基 金:航空科学基金资助项目(2017ZG55029);河南省科技攻关计划项目(182102210107);郑州航院研究生教育创新计划项目(2018CX017)
摘 要:为增强产品的鲁棒性,使产品质量得到明显改善和提升.本文研究一种基于模糊决策的多响应参数优化方法。將满意度函数与模糊逻辑推理结合.对复杂生产系统进行简化.避免权值设置的同时.也充分提取各响应机理之间有效信息.实现了生产过程的模糊决策。然后在主效应分析的基础上构建神经网络预测模型.获得最优工艺参数组合。最后将本文方法应用于铁基合金热喷涂工艺参数优化问题中.使热喷涂工艺稳健性得到提升,证明了文中方法是有效的。In order to enhance the robustness of product,a multi-response parameter optimization method based on fuzzy decision making is studied in products9 quality improvement.The satisfaction function is combined with fuzzy logic reasoning to simplify the complex production system,which realizes the fuzzy decision of the production process.This measure can not only avoid the weight setting,but also fully extract the effective information through the response mechanism.And then,based on the results of main effect analysis,the neural network prediction model will be constructed to obtain the optimal combination of process parameters.Finally*the method is applied to the optimization of the parameters of Fe-based alloy thermal spraying process,improving the robustness of the thermal spraying process,which proves that the method is effective。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.96.228