检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张怀峰 江婧 张香燕[2] 皮德常[1] ZHANG Huai-feng;JIANG Jing;ZHANG Xiang-yan;PI De-chang(College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Beijing Institute of Spacecraft System Engineering,Beijing 100094,China)
机构地区:[1]南京航空航天大学计算机科学与技术学院,南京211106 [2]北京空间飞行器总体设计部,北京100094
出 处:《宇航学报》2019年第12期1468-1477,共10页Journal of Astronautics
基 金:国家自然科学基金(U1433116);南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20181605)
摘 要:面向卫星电源高维周期性时序遥测数据,提出了一种新颖的代表性特征自编码器(RFAE)模型,并用于无监督的异常检测。RFAE采用改进的堆叠自编码器损失函数和训练算法,从而使模型可以学习到相位相同样本的代表性特征;然后根据代表性特征重构样本,根据重构误差来判断样本是否异常。在试验部分首先通过模拟数据校验了RFAE算法能够有效地检测出高维周期性时序数据的异常,然后又采用某卫星电源系统2014年1~12月真实遥测数据进行试验,RFAE异常检测准确率达到99%,检测效果明显优于目前的其他异常检测算法,具有较高应用价值。In this paper,a novel representative feature auto-encoder(RFAE)model is proposed and applied to the unsupervised anomaly detection for the high-dimensional periodic time series telemetry data of a satellite power system.RFAE uses the improved stacked auto-encoder loss function and training algorithm,so that the model can learn the representative features of the same phase samples.Then,the samples are reconstructed according to the representative features and the reconstructed error is used to determine whether the samples are abnormal.In the experimental part,firstly,the synthetic data proves that the RFAE algorithm can effectively detect the anomalies of the high-dimensional periodic time series data.Then,the real telemetry data of a satellite power system from January to December 2014 is used to conduct experiment.The accuracy rate of the RFAE anomaly detection reaches 99%,and the detection effect is obviously better than those of other current anomaly detection algorithms.
分 类 号:V241.9[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173