检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:史明泉[1] 崔丽珍[1] 赫佳星[1] SHI Mingquan;CUI Lizhen;HE Jiaxing(School of Information Engineering,Inner Mongolia University of Science&Technology,Baotou 014010,China)
机构地区:[1]内蒙古科技大学信息工程学院
出 处:《中国矿业》2020年第2期88-93,共6页China Mining Magazine
基 金:国家自然科学基金项目资助(编号:61761038);内蒙古自治区科技计划项目资助(编号:201502013-1);内蒙古自治区自然基金项目资助(编号:2015MS0623)
摘 要:为进一步提高井下定位精度,本文提出一种基于粒子群算法-广义回归神经网络(PSO-GRNN)的煤矿井下定位算法。该算法利用广义回归神经网络(GRNN)建立井下定位模型,通过粒子群优化算法(PSO)寻找广义回归神经网络最优的平滑因子,降低人为调整的影响,提高定位精度。将信标节点接收到的信号强度(RSSI)值输入训练好的神经网络,神经网络的输出就是待测节点的坐标。仿真实验表明,PSO-GRNN模型相比未经优化的GRNN模型和BP模型,定位精度更高;相比BP模型,算法复杂度更低,效率更高,满足井下自适应定位要求。A kind of underground positioning algorithm based on particle swarm optimization-generalized regression neural network(PSO-GRNN)is proposed.The proposed PSO-GRNN algorithm builds underground positioning model by the fast learning speed and strong approximation ability of generalized regression neural network(GRNN)and adjusted GRNN's smoothing parameters by using particle swarm optimization algorithm(PSO)to reduce the impact of human factors on selecting GRNN smoothing parameters to minimum.Finally,the coordinates of unknown nodes of underground can be directly obtained from the output of PSO-GRNN model.Simulating results show that the positioning accuracy of the PSO-GRNN model is better than that of the GRNN model and the BP model,and the algorithm complexity is lower and the efficiency is higher than that of the BP model,and meets the requirement of adaptive underground positioning.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28