检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨波[1] 程维政 朱超 YANG Bo;CHENG Weizheng;ZHU Chao(School of Automation,Wuhan University of Technology,Wuhan 430070,China)
机构地区:[1]武汉理工大学自动化学院
出 处:《哈尔滨工业大学学报》2020年第3期179-185,194,共8页Journal of Harbin Institute of Technology
基 金:国家自然科学基金(61203032);湖北省自然科学基金(2012FFB05007);国家留学基金委基金(201406955049)
摘 要:为提高基于优化方法的网络社团结构识别算法的有效性,设计一种利用小世界效应加速生物地理学优化过程的网络社团结构识别算法.首先基于矩阵随机编码建立网络社团识别生物地理学优化框架,在栖息地中全局进化地搜索对应于最大化模块度的网络社团划分.然后,给出基于小世界效应的生物地理学迁移策略,可以加速进化算法的信息交换过程.最后,运用该算法在现实网络和人工合成网络上进行实验.结果表明:引入小世界效应能够降低网络社团结构识别算法的收敛时间;在典型现实网络与人工合成网络上运行该算法能够获得较高的模块度值与标准化互信息值;信息交换的拓扑结构能够优化进化算法效率.应用小世界效应加速生物地理学优化的网络社团识别算法具有较好的可行性与有效性.To enhance the efficiency of optimization⁃based algorithms for detecting community structures in networks,a novel algorithm was designed by utilizing the small⁃world effects to accelerate biogeography⁃based optimization process for community detection.First,based on matrix random coding,the problems of detecting community structures in networks were embedded into the framework of biogeography⁃based optimization.Community structures were searched evolutionarily and globally corresponding to the maximal modularity in habitat.Then,a migration evolutionary strategy was introduced based on the small⁃world effects,which can accelerate the information exchange process of the proposed evolutionary algorithm.Finally,tests on real⁃world and computer⁃generated networks were conducted using the proposed algorithm.Results show that the small⁃world effects reduced the convergence time of the algorithm for community detection,and the values of the modularity and the normalized mutual information were both high when applying the proposed algorithm to the real⁃world and the computer⁃generated networks.The topology structures of information exchanges could optimize the efficiency of the evolutionary algorithm.Therefore,the algorithm adopting small⁃world effects to accelerate biogeography⁃based optimization for network community detection was proved feasible and effective.
关 键 词:网络 社团结构识别 进化算法 生物地理学优化 小世界效应
分 类 号:TP393.0[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.17.118