检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于乃功 魏雅乾[1,2,3] 王林 YU Naigong;WEI Yaqian;WANG Lin(Faculty of Information Technology,Beijing University of Technology,Beijing 100124;Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing University of Technology,Beijing 100124;Digital Community Ministry of Education Engineering Research Center,Beijing University of Technology,Beijing 100124)
机构地区:[1]北京工业大学信息学部,北京100124 [2]北京工业大学计算智能与智能系统北京市重点实验室,北京100124 [3]北京工业大学数字社区教育部工程研究中心,北京100124
出 处:《模式识别与人工智能》2020年第1期50-58,共9页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金项目(No.61573029);北京市自然科学基金项目(No.4162012)资助~~
摘 要:针对融合视觉信息的仿鼠脑海马模型闭环检测精度较低、地图构建不准确的问题,文中提出基于卷积神经网络的仿鼠脑海马结构认知地图构建方法.利用改进的卷积神经网络模型提取视觉输入特征,融合空间细胞计算模型得到位置信息,并构建认知地图.基于汉明距离计算视觉信息与视图库中图像的相似度,实现对复杂动态环境中熟悉场景的识别,完成机器人在环境中的定位及位置纠正.仿真与物理实验验证文中方法的有效性与鲁棒性.Rat hippocampal formation model fusing visual information has problems of low pose estimation accuracy of closed loop detection and inaccurate map construction.Aiming at the problems,a cognitive map building method based on rat hippocampal formation using convolutional neural network(CNN)is proposed.The improved CNN is utilized to extract visual input features.Location information is obtained by integrating spatial cell computing model and the information is fused to construct cognitive map.Hamming distance is adopted to calculate the similarity between visual information and images in visual library,and thus the familiar scene in the complex dynamic environment is recognized,and the self-positioning and position correction of the robot are completed.Simulation and physical experiments indicate that the proposed method is effective and robust.
关 键 词:卷积神经网络(CNN) 海马体 认知地图 位置细胞 网格细胞
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229