磨削过程信号监测与砂轮磨损预测模型构建  被引量:9

Monitoring of Grinding Signals and Development of Wheel Wear Prediction Model

在线阅读下载全文

作  者:郭维诚 李蓓智[1] 杨建国[1] 周勤之[1] GUO Weicheng;LI Beizhi;YANG Jianguo;ZHOU Qinzhi(College of Mechanical Engineering,Donghua University,Shanghai 201600,China)

机构地区:[1]东华大学机械工程学院

出  处:《上海交通大学学报》2019年第12期1475-1481,共7页Journal of Shanghai Jiaotong University

基  金:国家科技重大专项资助项目(2018ZX04011001)

摘  要:针对磨削过程中砂轮磨损难以直接监测的问题,提出了基于多特征优化融合的随机森林(MFOF-RF)算法,以实现砂轮磨损的准确预测.对外圆纵向磨削中采集的功率、加速度和声发射信号进行预处理和特征提取,获得平均值、有效值以及峰值频率等多个时域和频域信号特征.以统计学指标为评价标准,对预测模型的参数进行调优,确定了最佳的砂轮磨损信号特征组合.结果表明,相比于使用单一特征预测砂轮磨损,MFOF-RF模型提高了信号特征与砂轮磨损的相关程度,预测误差降低了30%以上.Based on the issue that monitoring of wheel wear is difficult to be implemented directly during grinding process, a multi-feature optimization and fusion based random forest(MFOF-RF) algorithm was proposed to realize the accurate prediction of wheel wear. An experiment of cylindrical traverse grinding was performed and the power, acceleration and acoustic emission signals were collected and processed in order to extract a large amount of time-domain and frequency-domain signal features. Statistical criteria were used to adjust model parameters and choose best feature combination for the prediction of wheel wear. The results shown that the MFOF-RF model improved the prediction accuracy and diminished error more than 30% compared with the model with single feature.

关 键 词:砂轮磨损 多特征优化融合 特征选择 随机森林 

分 类 号:TH39[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象