检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴南锟 刘健[1] 郑文英[1] 项佳[1] 张佳奇[1] 余坤勇[1] Wu Nankun;Liu Jian;Zheng Wenying;Xiang Jia;Zhang Jiaqi;Yu Kunyong(University Key Lab for Geomatics Technology and Optimize Resources Utilization in Fujian Province,Fujian Agriculture and Forestry University,Fuzhou 350002,P.R.China)
机构地区:[1]3S技术与资源优化利用福建省高校重点实验室(福建农林大学)
出 处:《东北林业大学学报》2020年第1期68-73,87,共7页Journal of Northeast Forestry University
基 金:国家自然科学基金面上项目(31770760)
摘 要:采用卡萨生物圈(CASA)模型的遥感间接估算法对长汀县河田镇马尾松林地土壤有机碳进行模型构建。结果表明:结合多种植被指数构建的综合植被指数(ICV),缓解了归一化植被指数(INDV)在植被净第一性生产力(NPP)反演的饱和现象及高估现象,拟合精度比归一化植被指数提高了17.4%,说明综合植被指数在研究区土壤有机碳(SOC)的估算上有更高的契合度;运用综合植被指数构建的随机森林回归模型,对土壤有机碳预测综合精度(R^2=0.597 2,RMSE=1.76,RM=94.85%)比其他回归模型高,适用于研究区SOC的估算。By the CSAS model-based remote sensing indirect estimation method, the model inversion of soil organic carbon in Pinus massoniana forest land in Hetian Town, Changting County was constructed. The CVI(Comprehensive Vegetation Index) effectively alleviated the saturation phenomenon and overestimation of NDVI(Normalized Vegetation Index) in the NPP(Net Primary Productivity) inversion process which constructed by combining multiple vegetation indices, and the fitting accuracy was improved by 17.4% compared with NDVI, indicating that CVI is a higher degree of fit in the estimation of the SOC(Soil Organic Carbon). The SOC prediction based on CVI constructed random forest regression model(R^2=0.597 2, RMSE=1.76, RM=94.85%) is the most comprehensive model in multiple regression models, and is suitable for estimating SOC in the study area.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.252.84