检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁枫林 郭武[1] 孙健[1] DING Feng-lin;GUO Wu;SUN Jian(University of Science and Technology of China,National Engineering Laboratory for Speech and Language Information Processing,Hefei 230027,China)
机构地区:[1]中国科学技术大学语音及语言信息处理国家工程实验室
出 处:《小型微型计算机系统》2020年第1期19-23,共5页Journal of Chinese Computer Systems
基 金:科技部国家重点研发计划16年项目(YF2100060003)资助
摘 要:近几年来,基于端到端模型的语音识别系统因其相较于传统混合模型的结构简洁性和易于训练性而得到广泛的应用,并在汉语和英语等大语种上取得了显著的效果.本文将自注意力机制和链接时序分类损失代价函数相结合,将这种端到端模型应用到维吾尔语语音识别上.考虑到维吾尔语属于典型的黏着语,其丰富的构词形式使得维吾尔语的词汇量异常庞大,本文引入字节对编码算法进行建模单元的生成,从而获得合适的端到端建模输出单元.在King-ASR450维吾尔语数据集上,提出的算法明显优于基于隐马尔可夫模型的经典混合系统和基于双向长短时记忆网络的端到端模型,最终识别词准确率为91.35%.Compared with the conventional hybrid models,the end-to-end frameworks have recently been widely used in the automatic speech recognition(ASR)fields for their simple structure and ease of training,and have achieved remarkable results in large languages such as Chinese and English.In this paper,the end-to-end model which integrates self-attention mechanism and Connectionist Temporal Classification(CTC)loss function is applied to Uyghur speech recognition.Uyghur is a typical adhesive language with extremely large vocabulary.This paper introduces Byte Pair Encoding(BPE)to generate modeling units for CTC output layer.Experiments are carried out on King-ASR450 Uyghur corpus,the proposed methods can achieve better performance than the conventional hybrid system based on Hidden Markov Model and the end-to-end model based on Bi-directional long-short memory network,and we can final obtain a 91.35%word accuracy in this corpus.
关 键 词:语音识别 维吾尔语 端到端 自注意力 字节对编码 链接时序分类
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117