复杂网络社区发现研究进展  被引量:24

Review on Community Detection in Complex Networks

在线阅读下载全文

作  者:赵卫绩[1,2] 张凤斌[1] 刘井莲[2,3] ZHAO Wei-ji;ZHANG Feng-bin;LIU Jing-lian(School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China;School of Information Engineering,Suihua University,Suihua,Heilongjiang 152061,China;School of Computer Science and Engineering,Northeastern University,Shenyang 110819,China)

机构地区:[1]哈尔滨理工大学计算机科学与技术学院,哈尔滨150080 [2]绥化学院信息工程学院,黑龙江绥化152061 [3]东北大学计算机科学与工程学院,沈阳110819

出  处:《计算机科学》2020年第2期10-20,共11页Computer Science

基  金:国家自然科学基金(61172168,61772122);黑龙江省省属高校基本科研业务费科研项目(KYYWF10236180104,KYYWF10236180207)~~

摘  要:近年来,随着现代网络通信和社会媒体等技术的飞速发展,复杂网络成为多学科交叉研究的热点之一,社区发现是复杂网络中的一个重要问题,对其进行研究具有重要的理论意义和应用价值。该问题吸引了多个学科领域的众多学者的关注,并且已有许多社区发现算法被提出。已有的社区发现综述多是侧重某一方向或特定领域展开,基于此,文中在之前工作的基础上,对国内外社区发现工作进行了深入调研,较全面地阐述了复杂网络社区发现的研究现状。首先,针对不同网络结构,给出社区发现的问题定义和主要的评价指标。然后,介绍了不同网络结构中的经典社区发现算法,包括同质网络中的全局社区发现、局部社区发现算法,异质网络中的二分网络、三分网络和多分网络中的社区发现,结合节点内容和连接结构的社区发现算法,以及动态网络中的社区发现和社区演化工作。最后,简要介绍了社区发现的典型应用,包括影响最大化、链路预测和情感分析领域的应用。此外,探讨了当前社区发现研究面临的主要挑战,试图为社区发现研究领域勾画一个较为清晰和全面的轮廓,为初学者提供指引。In recent years,with the rapid development of modern network communication and social media technologies,complex network has become one of the frontier hotspots of interdisciplinary research.As an important problem in the research of complex network,community detection has important theoretical significance and application value,and has attracted increasing attention.Many community detection algorithms and reviews have been proposed.However,most of the existing reviews on community detection focus on a particular direction or field.On the basis of previous work,this paper did deep research in the community detection algorithms,and gave a review on the research progress of community detection.Firstly,this paper gave the definition of community detection and evaluation measurements for different network structure.Then,this paper introduced the classic community detection algorithms on different network structure,including the global community detection and local community detection algorithms on homogeneous networks,community detection on heterogeneous network,and community detection on link structure combined with node content,as well as the dynamic network community detection and community evolution.Finally,this paper briefly introduced the typical applications of community discovery in the real world,including impact maximization,link prediction and emotion analysis application.In addition,this paper discussed the challenges in the current community discovery field.This paper try to draw a clearer and more comprehensive outline for the community detection research field,and provide a good guide for beginners in the community detection.

关 键 词:社区发现 社区结构 同质网络 异质网络 动态网络 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象