检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖应旺 姚美银 刘军 张绪红 陈贞丰 XIAO Yingwang;YAO Meiyin;LIU Jun;ZHANG Xuhong;CHEN Zhenfeng(School of Automation,Guangdong Polytechnic Normal University,Guangzhou 510665,Guangdong,China;Equipment and Laboratory Management Office,Guangdong Polytechnic Normal University,Guangzhou 510665,Guangdong,China)
机构地区:[1]广东技术师范大学自动化学院,广东省广州市510665 [2]广东技术师范大学院设备与实验室管理处,广东省广州市510665
出 处:《计算机与应用化学》2019年第4期434-438,共5页Computers and Applied Chemistry
基 金:广东省自然科学基金资助项目(2017A030313364)
摘 要:提出了一种基于混沌粒子群的优化核主元分析故障监测方法(Kernel Principal Component Analysis based on Chaotic Particle Swarm Optimization, CPSO-KPCA)。该方法充分利用了正常数据和故障数据的特征,通过混沌粒子群优化算法对KPCA的核函数参数进行优化,以发现最优的非线性特征,并能准确地监测出非线性故障。利用特征空间监测统计图,将该方法应用于轧钢过程的非线性监测,实际应用结果表明,该方法具有很高的故障监测精度。An optimized kernel principal component analysis based on chaotic particle swarm optimization method(CPSO-KPCA) is put forward in this paper. The improved method adequately makes use of the characteristics of normal data and fault data to optimize the parameters of the mixture kernel function through chaotic particle swarm optimization so that the optimal nonlinear feature can be discovered and nonlinear fault can be detected accurately. Based on monitoring statistics charts in the feature space, this method is applied to fault detection in rolling process which is a nonlinear process. Practical application shows that the presented method has higher accuracy in fault detection.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249