基于改进型粒子群优化算法的双辊薄带振动铸轧压下控制系统优化  被引量:5

Optimization of Twin-roll Thin Strip Vibrating Casting Screw-down Control Systems Based on Improved PSO Algorithm

在线阅读下载全文

作  者:孙明翰 许哲 郑立康 许志强[1] 杜凤山[1] SUN Minghan;XU Zhe;ZHENG Likang;XU Zhiqiang;DU Fengshan(School of Mechanical Engineering,Yanshan University,Qinhuangdao,Hebei,066004)

机构地区:[1]燕山大学机械工程学院

出  处:《中国机械工程》2020年第3期360-366,共7页China Mechanical Engineering

基  金:国家自然科学基金资助重点项目(U1604251);河北省自然科学基金资助重点项目(E2017203043)

摘  要:振动铸轧辊的周期性振动是诱发Kiss点波动的主要因素,亦可导致轧制力波动,最终造成铸轧薄带纵向厚度不均,为此,对粒子群优化算法进行改进,提出了在粒子群收缩因子算法基础上添加扰动因子的优化算法,并依托四种不同类型的测试函数对该算法进行了仿真分析。结合AMESim、MATLAB联合仿真平台进行仿真验证,并将该算法应用于双辊薄带振动铸轧机液压压下控制系统上进行实验验证,结果表明,在粒子群收缩因子算法基础上添加扰动因子的优化算法在收敛速度及求解精度上明显优于基本粒子群优化算法、粒子群收缩因子算法、带极值扰动的粒子群优化算法,使得实际辊缝宽度误差降低至0.1mm。该算法适用于双辊薄带振动铸轧的中试生产,增强了振动铸轧工艺的稳定性。The periodic vibrations of the cast-rolling were the main factor that induced the fluctuation of Kiss points,which might also cause the rolling forces to fluctuate,eventually resulting in uneven thickness of the casted strips.To this end,the constriction factor PSO added extremum disturbed factor was created based on the PSO algorithm.Simulation based on four different type of test functions was made,which combined with AMESIM-MATLAB co-simulation model for verification.The algorithm was applied to the hydraulic screwdown control system of twin-roll thin strip vibration cast-rolling mill for experimental verification.The results show that the constriction factor PSO added extremum disturbed factor is superior to the basic PSO,constriction factor PSO and extremum disturbed PSO algorithms in convergence speed and solution precision,where the errors of the actual roll seam width are decreased to 0.1mm.It is suitable for the pilot production of twin-roll strip vibration cast-rolling,which enhances the stability of the processes.

关 键 词:双辊薄带振动铸轧 粒子群优化算法 液压压下控制系统 联合仿真 

分 类 号:TG333[金属学及工艺—金属压力加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象