一种改进的k-modes聚类算法  被引量:6

An Improved K-Modes Clustering Algorithm

在线阅读下载全文

作  者:施振佺 陈世平[1] SHI Zhen-quan;CHEN Shi-ping(Business School,University of Shanghai for Science and Technology 200093;Nantong University,226019)

机构地区:[1]上海理工大学管理学院,上海200093 [2]南通大学,江苏南通226019

出  处:《运筹与管理》2019年第12期112-117,共6页Operations Research and Management Science

摘  要:传统的K-modes算法采用了简单的0-1匹配来计算属性间的相异度,后改进为频率计算相异度,但是他们都忽略了各属性间的差异。本文研究了基于粗糙集和知识粒度的属性加权算法,该算法既克服了属性的冗余问题又综合考虑了各属性间的差异。在此基础上,通过对传统K-modes算法进行属性加权来改进K-modes算法中忽略的属性间差异问题。通过与其他的K-Modes算法进行实验比较,结果表明新的算法更加有效的。The traditional K-modes algorithm,the simplematching dissimilarity measure,is used to compute the distance between two values of the samecategorical at tributes.This compares two categorical values directly and results in either a differenceof zero when the two values are identical or one if otherwise.However it ignores the differences among the attributes.In this paper,we studyan attribute weighting algorithm based on rough set and knowledge granulation.This algorithm not only overcomes the redundancy of attributes,but also takes into account the differences among attributes.Attributes weightingin the traditional K-modes algorithm are used to improve the K-modes algorithm to ignore the difference between attributes.Compared with other K-Modes clustering algorithms,the results show that the new algorithm is more effective.

关 键 词:聚类算法 分类属性数据 粗糙集 知识粒度 距离度量 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象