检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何新礼 谢莉[1] 杨慧中[1] HE Xin-li;XIE Li;YANG Hui-zhong(School of Internet of Things,Jiangnan University,Wuxi 214122,China)
机构地区:[1]江南大学物联网工程学院
出 处:《控制工程》2020年第1期64-69,共6页Control Engineering of China
基 金:国家自然科学基金(61403166,61773181);江苏省自然科学基金(BK20140164);中央高校基本科研业务费专项资金(JUSRP51733B)
摘 要:实际工业过程往往是一个多工况、非线性的大规模复杂系统,使得单一模型软测量建模方法难以充分挖掘数据信息。针对这一问题提出了一种基于密度峰(Density Peak,DP)聚类和随机森林回归(Random Forest Regression,RFR)的多模型软测量建模方法,从而对主导变量进行估计。首先,利用DP聚类算法对训练数据进行划分;其次,采用RFR方法建立各子类的回归子模型;最后采用开关切换的方法进行多模型融合。将提出方法应用于TE过程和丁烷蒸馏过程的软测量建模中,分别对产物G含量和丙烷含量进行估计。仿真结果表明估计精度得到提高,证明该方法是有效的。A practical industrial process is often a large-scale complex system with muti-operating modes and nonlinearities, making it difficult to fully mine the data information through a single soft sensor model. To solve this problem, a multi-model soft sensor development approach based on the density peak(DP) clustering and the random forest regression(RFR) is proposed to estimate dominant variables. Firstly, classify the training data by means of the DP clustering algorithm;secondly, establish regression sub-models based on the samples of each category by using the RFR method;finally, apply the switching method for multi-model fusion. The proposed method has been utilized to develop soft sensors of the Tennessee Eastman process and the butane distillation process for estimating the contents of G and propane, respectively. The simulation results illustrate that the estimation accuracy has been improved, which can verify the effectiveness of the proposed method.
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117