检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱家明[1] 杨阳 ZHU Jiaming;YANG Yang(School of Statistics and Applied Mathematics,Anhui University of Finance and Economics;School of Finance,Anhui University of Finance and Economics,Bengbu Anhui 233030,China)
机构地区:[1]安徽财经大学统计与应用数学学院,安徽蚌埠233030 [2]安徽财经大学金融学院,安徽蚌埠233030
出 处:《长沙大学学报》2020年第1期95-100,共6页Journal of Changsha University
基 金:国家自然科学基金项目“3-流猜想.Fulkerson-覆盖及相关问题”,编号:11601001
摘 要:养老保险的发展关系到社会保障体系的建设,对其的预测有利于推动我国养老产业的发展。为了预测我国城镇居民养老保险参保率的变化,基于2000年到2018年我国养老保险参保率的数据,利用MATLAB、EVIEWS等软件,建立GM(1:1)模型和ARIMA模型对我国2019年到2023年的养老保险参保率进行预测,并对所建立的模型进行检验和与预测的相对误差进行对比。根据预测的结果发现,利用GM(1:1)预测模型预测的参保率的上升趋势要快于ARIMA模型的预测结果,并根据预测结果对我国养老保险发展提出相关建议。The development of endowment insurance is related to the construction of social security system, and the prediction of endowment insurance is conducive to the construction and development of endowment industry in China. In order to predict the change of China’s urban residents’ endowment insurance coverage rate, based on the data of China’s endowment insurance coverage rate from 2000 to 2018, the paper uses MATLAB, Eviews and other software, and build the GM(1:1) model and ARIMA model to predict the endowment insurance coverage rate from 2019 to 2023 in China. The model is tested and compared with the predicted relative error. According to the prediction results, it is found that the rising trend of the insured rate predicted by GM(1:1) prediction model is faster than that predicted by ARIMA model, and relevant suggestions for the development of China’s endowment insurance are put forward based on the prediction results.
关 键 词:城镇居民 养老保险 参保率 ARIMA模型 GM(1)模型
分 类 号:X321[环境科学与工程—环境工程] F832.6[经济管理—金融学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3