检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:涂超 赵波[1] 王喜龙 Tu Chao;Zhao Bo;Wang Xilong(Shanghai University of Engineering Science,Shanghai 201620,China)
机构地区:[1]上海工程技术大学
出 处:《农业装备与车辆工程》2020年第2期83-88,共6页Agricultural Equipment & Vehicle Engineering
摘 要:车型识别是智能交通系统的重要组成部分。针对特定类车辆脸部特征相近,提取车头特征易导致模型辨别力差、识别精度低等问题。提出了一种基于车辆侧面特征的车型识别方法。采用卷积神经网络实现对不同类型车辆的检测,使用统计模型计算目标车辆的横向位置。建立双相机(触发相机和抓拍相机)协同跟踪模型,利用感知哈希算法,对目标车辆实现判别式跟踪。最后抓拍相机完成车辆正面抓拍,完成目标车辆的车牌识别。最终的检测实验结果取得了81.94%的平均正确均值(Mean Average Precision,mAP)。Vehicle type recognition is an important part of ITS.Due to the similar facial features of a certain type of vehicles,extracting the front feature of the vehicle can easily lead to the problem of insufficient expression capability and low recognition accuracy.A vehicle type recognition method based on vehicle side features is proposed.The convolutional neural network is used to detect different types of vehicles,and the statistical model is used to predict the driving lanes.The dual camera(trigger camera and snap camera)cooperative tracking model is established,and the Perceptual Hash Algorithm is used to realize the discriminant tracking of the target vehicle.Finally snap camera captures the front of the vehicle to complete the target vehicle license plate recognition.The final experimental result achieved an mean average precision(mAP)of 81.94%.
关 键 词:车辆 侧面特征 卷积神经网络 双相机协同 车型识别
分 类 号:U495[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30