具有多核结构的稀疏化DNN在轴承诊断中的应用  被引量:9

The Application of Sparse DNN with Multiple Kernel Structure in Bearing Diagnosis

在线阅读下载全文

作  者:吴小龙 雷文平[1] 陈宏[1] 韩捷[1] WU Xiao-long;LEI Wen-ping;CHEN Hong;HAN Jie(Vibration Engineering Research Institute,Zhengzhou University,He’nan Zhengzhou450001,China)

机构地区:[1]郑州大学振动工程研究所

出  处:《机械设计与制造》2020年第2期248-251,255,共5页Machinery Design & Manufacture

基  金:郑州市科技局项目(23110004);河南省高等学校精密制造技术与工程重点学科开发实验室开发基金资助项目(PMTE201301A);河南省杰出人才创新基金项目(0621000500)

摘  要:为了进一步提高深度神经网络(Deep Neural Network,DNN)在轴承故障诊断中的可靠性和稳定性,对深度学习(Deep Learning)中的一些关键技术进行了研究、借鉴以及改进。具体地沿用传统DNN中被广泛用于无监督学习的去噪自动编码器(Denoising Auto-encoder,DAE)进行特征提取,使得特征提取过程不再依赖于先验知识;然后对传统DNN中的DAE进行稀疏化处理,使得特征的提取更加合理、准确;并在DNN中引入核函数运算形成多核结构,提高诊断结果的可靠性以及鲁棒性。最后通过具体的实验,与传统DNN、支持向量机(Support Vector Machine,SVM)等故障诊断方法相对比,来最终反映基于稀疏化DAE的多核结构DNN在轴承故障诊断领域更优越的正确率与稳定性。In order to further improve the reliability and stability of the Deep Neural Network(DNN)in bearing fault diagnosis,some key technologies in Deep Learning are studied,borrowed and improved in it.Specifically,the DAE(Denoising Auto-encoder)of the traditional DNN is used for the feature extraction,which has been widely used in unsupervised learning,so that the feature extraction process no longer depends on prior knowledge;then the DAE in the traditional DNN is processed into sparsification,to make the feature extraction more reasonable and accurate;and in order to improve the reliability and robustness of the diagnosis results,the kernel functions are introduced in DNN.Finally,by the specific fault diagnosis experiment and effect contrast of DNN proposed in this paper,traditional DNN and Support Vector Machine(SVM)etc.,this paper finally reflects the high accuracy and stability of this kind of proposed DNN that based on sparisification DAE and multiple kernel structure.

关 键 词:深度学习 自动编码器 稀疏化 核函数 特征提取 故障诊断 

分 类 号:TH16[机械工程—机械制造及自动化] TH133.33

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象