Significantly improved oxidation of bio-based furans into furan carboxylic acids using substrate-adapted whole cells  

Significantly improved oxidation of bio-based furans into furan carboxylic acids using substrate-adapted whole cells

在线阅读下载全文

作  者:Mao Wen Xue-Ying Zhang Min-Hua Zong Ning Li 

机构地区:[1]School of Food Science and Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China

出  处:《Journal of Energy Chemistry》2020年第2期20-26,共7页能源化学(英文版)

基  金:financially supported by the National Natural Science Foundation of China(21676103);the Natural Science Foundation of Guangdong Province(2017A030313056);the Science and Technology Project of Guangzhou City(201804010179)。

摘  要:Furan carboxylic acids are important building blocks in polymer and fine chemical industries. In this work, a simple substrate adaptation strategy was applied to improve the catalytic performances of Comamonas testosteroni SC1588 cells for the synthesis of various furan carboxylic acids. It was found that biocatalytic synthesis of 5-hydroxymethyl-2-furancarboxylic acid(HMFCA) was substantially promoted by adding histidine and increasing cell concentrations. HMFCA was produced in a quantitative yield from200 m M HMF in 24 h. Besides, the HMFCA yields of 71%–81% were achieved with the substrate concentrations up to 250–300 m M. It was firstly found that 4-tert-butylcatechol(TBC), as the stabilizer present in HMF, exerted a significantly detrimental effect on whole-cell catalytic synthesis of HMFCA at high substrate concentrations(more than 130 m M). In addition, a variety of furan carboxylic acids such as2-furoic acid, 5-methyl-2-furancarboxylic acid and 5-methoxymethyl-2-furancarboxylic acid were synthesized with the yields up to 98%.Furan carboxylic acids are important building blocks in polymer and fine chemical industries. In this work, a simple substrate adaptation strategy was applied to improve the catalytic performances of Comamonas testosteroni SC1588 cells for the synthesis of various furan carboxylic acids. It was found that biocatalytic synthesis of 5-hydroxymethyl-2-furancarboxylic acid(HMFCA) was substantially promoted by adding histidine and increasing cell concentrations. HMFCA was produced in a quantitative yield from200 m M HMF in 24 h. Besides, the HMFCA yields of 71%–81% were achieved with the substrate concentrations up to 250–300 m M. It was firstly found that 4-tert-butylcatechol(TBC), as the stabilizer present in HMF, exerted a significantly detrimental effect on whole-cell catalytic synthesis of HMFCA at high substrate concentrations(more than 130 m M). In addition, a variety of furan carboxylic acids such as2-furoic acid, 5-methyl-2-furancarboxylic acid and 5-methoxymethyl-2-furancarboxylic acid were synthesized with the yields up to 98%.

关 键 词:5-HYDROXYMETHYLFURFURAL 5-hydroxymethyl-2-furancarboxylic acid OXIDATION SUBSTRATE adaptation strategy WHOLE-CELL biocatalysis 

分 类 号:O621.251[理学—有机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象