AN ERROR ANALYSIS METHOD SPP-BEAM AND A CONSTRUCTION GUIDELINE OF NONCONFORMING FINITE ELEMENTS FOR FOURTH ORDER ELLIPTIC PROBLEMS  被引量:2

在线阅读下载全文

作  者:Jun Hu Shangyou Zhang 

机构地区:[1]LMAM and School of Mathematical Sciences,Peking University,Beijing 100871,China [2]Department of Mathematical Sciences,University of Delaware,Newark,DE 19716,USA

出  处:《Journal of Computational Mathematics》2020年第1期195-222,共28页计算数学(英文)

摘  要:Under two hypotheses of nonconforming finite elements of fourth order elliptic problems,we present a side-patchwise projection based error analysis method(SPP-BEAM for short).Such a method is able to avoid both the regularity condition of exact solutions in the classical error analysis method and the complicated bubble function technique in the recent medius error analysis method.In addition,it is universal enough to admit generalizations.Then,we propose a sufficient condition for these hypotheses by imposing a set of in some sense necessary degrees of freedom of the shape function spaces.As an application,we use the theory to design a P3 second order triangular H2 non-conforming element by enriching two P4 bubble functions and,another P4 second order triangular H2 nonconforming finite element,and a P3 second order tetrahedral H2 non-conforming element by enriching eight P4 bubble functions,adding some more degrees of freedom.

关 键 词:Nonconforming finite element A priori error analysis Biharmonic equation 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象