检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗飞 刘鹏飞 罗元 朱思蒙 LUO Fei;LIU Pengfei;LUO Yuan;ZHU Simeng(School of Optoelectronic Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
机构地区:[1]重庆邮电大学光电工程学院
出 处:《计算机应用》2020年第2期616-620,共5页journal of Computer Applications
基 金:重庆市技术创新与应用示范(产业类重点研发)项目(cstc2018jszx-cyzdX0112)~~
摘 要:针对单一特征识别率低、自适应性差等问题,提出一种基于希尔伯特-黄变换(HHT)和共同空间模式(CSP)的特征提取方法HCHT。首先,对原始脑电信号(EEG)进行经验模态分解(EMD)得到固有模态函数(IMF),并将IMF分量合并成新的信号矩阵;然后,对IMF进行希尔伯特谱分析,得到信号的时-频域特征;接着,对构造的信号矩阵进行进一步的CSP分解,将时-频域特征扩展成时-频-空域特征;最后,通过支持向量机(SVM)对特征集进行分类。在BCI Competition II数据集的实验表明,与HHT时-频域和CSP空域特征的方法相比,所提方法的识别准确率分别提高了7.5、10.3和9.2个百分点,且标准差更小。在智能轮椅平台进行在线实验的结果表明,HCHT能有效提高识别准确率和稳定性。To solve the problems of low recognition rate and poor adaptability of single feature,a feature extraction method named Hilbert-CSP-Huang Transform(HCHT)was proposed based on Hilbert-Huang Transform(HHT)and Common Spatial Pattern(CSP).Firstly,the Intrinsic Mode Function(IMF)was obtained by the Empirical Mode Decomposition(EMD)of original ElectroEncephaloGram(EEG)signals,and the IMF components were merged into a new signal matrix.Secondly,the time-frequency domain features were obtained by Hilbert spectrum analysis.Thirdly,the timefrequency domain features were extended into time-frequency-space features by further CSP decomposition of the constructed signal matrix.Finally,the feature set was classified by Support Vector Machine(SVM).Experiments on the BCI Competition II dataset show that compared with methods based on HHT time-frequency and CSP spatial domain features,the proposed method has the recognition accuracy increased by 7.5,10.3 and 9.2 percentage points respectively with smaller standard deviation.The online experimental results on the intelligent wheelchair platform show that HCHT can effectively improve the recognition accuracy and robustness.
关 键 词:脑电信号 运动想象 希尔伯特-黄变换 共同空间模式 智能轮椅
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.182.104