基于CNN的舰船高分辨距离像目标识别  被引量:3

High Resolution Range Profile Ship Target Recognition Based on CNN

在线阅读下载全文

作  者:张奇 卢建斌[1] 刘涛[1] 刘齐悦 ZHANG Qi;LU Jianbin;LIU Tao;LIU Qiyue(School of Electronic Engineering,Naval University of Engineering,Wuhan 430033,China;Unit 91245 of PLA,Huludao 125000,China)

机构地区:[1]海军工程大学电子工程学院,湖北武汉430033 [2]中国人民解放军91245部队,辽宁葫芦岛125000

出  处:《雷达科学与技术》2020年第1期27-33,共7页Radar Science and Technology

基  金:国家自然科学基金(No.61501486,61372165)。

摘  要:针对传统目标识别方法人工提取特征难以挖掘到数据深层次特征的问题,提出了将卷积神经网络(CNN)应用于高分辨距离像(HRRP)的目标识别方法,实现了对数据深层次特征的自动提取。首先构造CNN模型,设置网络参数;然后针对HRRP数据是一维的问题,将HRRP数据重新排列使一维数据变为二维数据;其次用训练数据对CNN模型进行训练得到网络参数;最后用训练好的网络模型对测试数据进行目标识别。通过对数据的减半并且添加噪声,验证了CNN的泛化性能。通过对学习率的优化,可以进一步提高CNN的识别率。实测数据的实验结果表明,CNN具有较好的识别性能。For the problem that traditional target recognition method is difficult to mine the deep feature of data,the application of convolutional neural network(CNN)to high resolution range profile(HRRP)target recognition method is proposed in this paper.It realizes the automatic extraction of deep features of data.Firstly,the CNN model is constructed and the network parameters are set.Secondly,for the problem that HRRP data are one-dimensional,HRRP data are reordered to transform one-dimensional data into two-dimensional data.Then,the CNN model is trained with training data to obtain network parameters.Last,the target recognition of test data is carried out with trained network model.The generalization performance of CNN is verified by halving the data and adding noise.The target recognition rate of CNN can be further improved by optimizing the learning rate.Experimental results of measured data show that CNN achieves better recognition performance.

关 键 词:雷达目标识别 高分辨距离像 卷积神经网络 深度学习 

分 类 号:TN957.51[电子电信—信号与信息处理] TP183[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象