检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:麻祥才 肖颖[1] 钱志伟[1] 王东东[1] 王晓红[2] 李贤峰 张大伟[2] MA Xiang-cai;XIAO Ying;QIAN Zhi-wei;WANG Dong-dong;WANG Xiao-hong;LI Xian-feng;ZHANG Da-wei(Shanghai Publishing and Printing College,Shanghai 200093,China;University of Shanghai for Science and Technology,Shanghai 200093,China;Shanghai Zhicai Industrial Co.,Ltd.,Shanghai 201803,China)
机构地区:[1]上海出版印刷高等专科学校,上海200093 [2]上海理工大学,上海200093 [3]上海致彩实业有限公司,上海201803
出 处:《包装工程》2020年第5期223-227,共5页Packaging Engineering
基 金:上海市教育发展基金会和上海市教育委员会“晨光计划”(18CGB09);“柔版印刷绿色制版与标准化实验室”招标课题(ZBKT201809);“柔版印刷绿色制版与标准化实验室”资助项目(LGPSFP-01,LGPSFP-02)。
摘 要:目的实现LCD显示器RGB颜色空间到颜色光谱高效的特征化。方法利用主成分分析法对光谱数据进行降维处理以及借助RBF神经网络研究输入变量数据范围、视觉加权函数和颜色数量对特征化模型的精度影响。结果主成分个数为6时可以很好地保留光谱原来的信息;输入变量范围为0到2.55,CIE1931视觉函数作为加权函数,颜色数量为364时特征化精度高,客观验证99个颜色转换的平均色差为0.36,最大色差为1.59,总样本的平均色差为0.17。结论输入变量数据范围对模型影响最大,视觉加权函数和颜色数量次之,因此在特征化时要考虑输入变量范围、视觉加权函数和颜色数量,这样可以提高模型的精度。文中提出的模型是一种精度较高的特征化模型,具有一定实际应用价值。The paper aims to realize efficient characterization of the LCD display RGB color space to color spectrum. The principal component analysis method was used to reduce the dimensionality of the spectral data and the RBF neural network was used to study the influence of the input variable data range, visual weighting function and color quantity on the accuracy of the characterization model. The original information of the spectrum could be properly preserved when the number of principal components was 6. The characterization accuracy was high when the number of principal components was 6, the input variable range was 0 to 2.55, the CIE1931 visual function was used as the weighting function, and the number of colors was 364. The average color difference of 99 color conversions was objectively verified to be 0.36, the maximum color difference was 1.59, and the average color difference of all color patches was 0.17. The input variable data range has the greatest impact on the model, and the weighting function and the number of colors are the second. Therefore, the input variable range, visual weighting function and number of colors should be considered in the characterization to improve the accuracy of the model. The model proposed is a high-precision characterization model with certain practical application value.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49