检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗沅 党娇娇[1] 宋祖勋[1,2] 王保平[1,2] LUO Yuan;DANG Jiaojiao;SONG Zuxun;WANG Baoping(School of Electronics and Information,Northwestern Polytechnical University,Xi'an,710072,China;National Key Laboratory of Science and Technology on UAV,Northwestern Polytechnical University,Xi'an,710065,China)
机构地区:[1]西北工业大学电子信息学院,陕西西安710072 [2]西北工业大学无人机特种技术重点实验室,陕西西安710065
出 处:《系统工程与电子技术》2020年第4期749-755,共7页Systems Engineering and Electronics
基 金:国家自然科学基金(61472324)资助课题
摘 要:若测量矩阵满足约束等距性(restricted isometric property,RIP),则样本能够完美恢复出原始信号。而对于给定矩阵很难验证其是否满足RIP需求,因此,本文采用李雅普诺夫指数作为一种针对离散混沌测量矩阵的验证指标。首先分析了RIP与李雅普诺夫指数之间的联系,然后给出了一种分段式混沌映射构造方法用以提高混沌性能,并从理论和仿真上证明了该方法的有效性。实验结果表明,这种方法不仅提高了混沌序列的随机性和自相关性,而且所生成的测量矩阵也具有更好的性能。因此,引进李雅普诺夫指数是一种有效的验证离散混沌测量矩阵性能的方法,提高李雅普诺夫指数能够提高混沌测量矩阵的性能。If the sampling matrix has the restricted isometric property(RIP),the samples will contain enough information to recover the original signal extremely well.Actually,the RIP requirement is hard to verify for a given matrix.Therefore,the Lyapunov exponent as the metric is used to verify the performance of the discrete chaotic measurement matrix.Firstly,the relationship between the RIP and the Lyapunov exponent is analyzed,and a segmentation method is proposed for improving the performance of the chaotic map,then its validity is proved by theory and numerical results.The present results show that the method can both increase the Lyapunov exponent of chaotic map and improve the performance of the generated measurement matrix.Obviously,the Lyapunov exponent is a good metric to verify the performance of the discrete chaotic measurement matrix.By increasing the value of the Lyapunov exponent,the performance of the chaotic measurement matrix can be improved easily.
分 类 号:TN95[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49