检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:顾旭 魏爽 李莉[1] 苏颖 GU Xu;WEI Shuang;LI Li;SU Ying(College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 201418,China)
机构地区:[1]上海师范大学信息与机电工程学院,上海201418
出 处:《上海师范大学学报(自然科学版)》2020年第1期76-82,共7页Journal of Shanghai Normal University(Natural Sciences)
摘 要:针对密集分布目标的波达方向(DOA)估计,是当前高精度定位技术的难点和热点.已有的基于压缩感知原理的DOA估计方法往往存在离散网格与连续域参数匹配难度高、离散网格之间相关性高、计算效率低等问题.针对DOA密集分布、低信噪比的非理想情况,分别采用稀疏参数法(SPA)和连续压缩传感(CCS)算法,设计了无网格的压缩感知密集DOA估计方法,分析了这两种算法的性能特点.通过对比仿真实验证明:该方法可以有效提高密集DOA的估计精度.Efficient direction of arrival(DOA)estimation for densely distributed targets was a difficult and hot spot in current high-precision positioning technology.There were many problems and issuesfor existing DOA estimation methods which were designed based on the compressed sensing theory,such as the difficulty of matching the discrete grids with parameters in continuous domain,the high correlation among discrete grids,and the low computational efficiency.In this paper concerning the non-ideal situation of dense DOA distribution and low signal-to-noise ratio,gridless compressed sensing dense DOA estimation methods were designed using sparse and parametric approach(SPA)algorithm and continuous compressed sensing(CCS)algorithm respectively.The performance of these two algorithms for dense DOA estimation were analyzed.The simulation experiments showed that the method designed in this paper could effectively improve the estimation precision of dense DOA.
关 键 词:密集信号估计 压缩感知 无网格方法 波达方向(DOA)估计
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.176.160