检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王运兰[1] WANG Yun-lan(School of Electro-mechanical and Information Technology, Yiwu Industrial & Commercial College, Yiwu 322000, China)
机构地区:[1]义乌工商职业技术学院机电信息学院
出 处:《液晶与显示》2020年第2期180-188,共9页Chinese Journal of Liquid Crystals and Displays
基 金:2019年度义乌工商职业技术学院科研项目(No.2019JD502-02)~~
摘 要:本文设计了一种基于极限学习机算法的离散小波变换域视频水印添加方法,该方法包括水印嵌入和水印提取两个部分。在水印嵌入环节,首先使用场景切换检测算法实现非重叠帧提取,然后对非重叠帧的亮度分量进行5级离散小波变换提取第5级低频子边带系数矩阵,通过系数矩阵构建训练数据集并通过极限学习机进行回归训练,回归模型的输出矢量与水印子块对系数矩阵进行修正,最后通过逆小波变换得到嵌入水印的视频帧序列。在水印提取环节,对嵌入水印的视频帧序列与原始视频帧序列的亮度分量分别进行5级离散小波变换,通过提取两个低频子边带系数矩阵的差异部分来得到水印子块,将所有的子块重组便可得到完整水印。一系列实验显示,本方法在多个指标下表现良好,对多种攻击均具有鲁棒性。A discrete wavelet transform domain video watermarking approach based on extreme learning machine algorithm is designed.The approach includes watermark embedding and watermark extraction.In the watermark embedding process,the scene switching detection algorithm is used to realize non-overlapping frame extraction,and then the fifth-order discrete wavelet transform is applied to the luminance component of the non-overlapping frame to extract the fifth-order low-frequency sub-band coefficient matrix.The training data set is constructed by the coefficient matrix and the regression training is performed by the extreme learning machine.The output vector of the regression model and the watermark sub-block are used to correct the coefficient matrix.Finally,the sequence of video frames embedded in watermark is obtained by inverse discrete wavelet transform.In the watermark extraction process,a 5-level discrete wavelet transform is performed on the luminance component of the watermarked video frame sequence and the luminance component of the original video frame sequence,respectively.The watermark sub-block is obtained by extracting the difference portion of the two low-frequency sub-band coefficient matrices.A complete watermark can be obtained by reorganizing all the sub-blocks.A series of experiments show that the proposed approach is robust and extremely efficient.
分 类 号:TP394.1[自动化与计算机技术—计算机应用技术] TH691.9[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49