检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高晓阳 王刚[1] 万鹏程 GAO Xiao-yang;WANG Gang;WAN Peng-cheng(Air and Missile Defense College,Air Force Engineering University,Xi’an 710051,China)
出 处:《火力与指挥控制》2020年第2期126-129,共4页Fire Control & Command Control
基 金:国家自然科学基金资助项目(61703412)。
摘 要:针对分布式传感器网络的目标一致性状态估计问题,提出自适应一致性融合估计算法。考虑到网络中节点为测距和测方位的传感器,基于观测噪声与目标状态相关的假设,构建量测模型;引用无迹卡尔曼滤波与CI算法得到各节点的局部估计,通过误差矩阵加权更新节点状态以改进一致性算法,实现各节点对目标状态的一致性估计。仿真实验结果表明,该算法能够在快速收敛的过程中实现无中心节点的分布式传感器网络中各节点对目标位置的精确估计,同时又保证各节点之间的一致性。To get the consensus state estimation about the target based on distributed sensor networks,the adaptive consensus fusion estimation algorithm is proposed. In this paper,nodes in distributed sensor networks are considered as ranging and bearing sensors. Based on the assumption about the measured noise and the target state,the measurement model is established. Using untracebale Kalman filter and CI algorithm,the local estimation of each node is derived. Last,the improved consensus technique is employed to derive an implementation of consensus state estimation. The simulation results show that the proposed method can significantly improve the accuracy of target state estimation of each sensor node in a distributed sensor network,while the distributed consensus between each node is assured.
关 键 词:分布式传感器网络 状态估计 一致性融合估计 自适应
分 类 号:TJ02[兵器科学与技术—兵器发射理论与技术] TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.239