检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘鑫晶 刘彦隆 徐鑫鑫 LIU Xin-jing;LIU Yan-long;XU Xin-xin(School of Information and Computer,Taiyuan University of Technology,Jinzhong 030600,China)
机构地区:[1]太原理工大学信息与计算机学院,山西晋中030600
出 处:《小型微型计算机系统》2020年第2期410-415,共6页Journal of Chinese Computer Systems
基 金:国家自然科学基金项目(60772101)资助;太原理工大学项目(9002-03011843)资助.
摘 要:图像阈值分割是将灰度图像转换为二值图像的常用图像分割方式.经典多阈值Otsu算法对复杂图像进行分割取得了很好的效果,但是其采用穷举方法来寻找最优阈值是非常耗时的.针对这一问题,本文提出了一种基于细胞膜和自适应步长萤火虫混合优化算法的多阈值Otsu图像分割方法.利用萤火虫算法的启发式搜索来寻找图像分割的最优阈值很好地降低了算法的时间复杂度,并且在萤火虫算法中混合细胞膜算法很好地解决了萤火虫算法的"早熟"现象.实验结果表明,与经典多阈值Otsu法和萤火虫算法优化多阈值Otsu法相比,本文提出的算法具有更高的收敛速度和更好的图像分割效果,并且有效解决了萤火虫算法易陷入局部最优的问题.Thresholding is a popular image segmentation method that converts gray-level image into binary image.The classical multithreshold Otsu algorithm achieved good results in segmenting complex images,but it is very time consuming to use an exhaustive approach to finding the optimum threshold value.To solve this problem,this paper proposes a multi-threshold Otsu image segmentation method based on cell membrane(CM)and adaptive step glowworm swarm optimization(A-GSO)hybrid optimization algorithm(CMA-GSO).The optimum threshold value for image segmentation is sought by heuristic search using the GSO algorithm.This method reduces the computation time of the algorithm,and solves the"premature"phenomenon of the GSO algorithm by mixing the cell membrane algorithm in the GSO algorithm.Experimental results show that compared to the classical multi-threshold Otsu method and the GSO optimized multi-threshold Otsu method,our proposed algorithm has higher convergence speed and better image segmentation effect,and effectively solves the problem that the GSO algorithm is easy to fall into the local optimal solution.
关 键 词:图像分割 多阈值Otsu准则 萤火虫优化 细胞膜算法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15