检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯晓东 罗尧治[1] 丁毅 黄世荣 FENG Xiaodong;LUO Yaozhi;DING Yi;HUANG Shirong(College of Civil Engineering and Architecture,Zhejiang University,Hangzhou 310058,Zhejiang,China;College of Civil Engineering,Shaoxing University,Shaoxing 312000,Zhejiang,China;Technology Center,Jinggong Steel Building Group,Shaoxing 312030,Zhejiang,China)
机构地区:[1]浙江大学建筑工程学院,浙江杭州310058 [2]绍兴文理学院土木工程学院,浙江绍兴312000 [3]浙江精工钢结构集团有限公司技术中心,浙江绍兴312030
出 处:《华南理工大学学报(自然科学版)》2019年第11期122-129,共8页Journal of South China University of Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(51908356);浙江省自然科学基金资助项目(LQ19E080013);中国博士后科学基金资助项目(2019M662056)。
摘 要:为研究张拉整体结构的弹塑性静力特性,引入一种适用于求解大转动小应变的高效有限元算法——共旋坐标(CR)法.将空间杆单元的大位移分解为整体坐标系下的刚体位移和局部坐标系下的小变形,推导出了单元切线刚度矩阵的新表达式.采用一种结合荷载增量策略和Newton-Raphson法的非线性有限元算法对一个四杆张拉整体结构单元体的几何非线性弹塑性特性进行了研究.结果表明:相比于传统的TL法和UL法,采用CR法对张拉整体结构进行非线性静力特性分析具有更高的计算效率;四杆单胞结构下层构件的刚度大于上层构件的刚度;自应力系数的增大会导致四杆单胞结构变“硬”,且结构受压时的表现比受拉时更为明显;相比于结构的弹塑性响应,自应力系数在结构的弹性响应中扮演着更重要的角色.To investigate the static elasto-plastic properties of tensegrity structures,an efficient finite element me-thod—co-rotational(CR)formulation,which is suitable to solve large rotation and small strain problems,was introduced.Large displacement of a space rod element was decomposed into a rigid body motion in the global coordinate system and a pure small deformation in the local coordinate system.A new form of tangent stiffness matrix was derived based on the proposed approach.An incremental-iterative solution strategy in conjunction with the Newton-Raphson method was employed to study the geometrical nonlinear elasto-plastic properties of a quadruplex tensegrity unit.Research results shows that the CR approach is computationally more efficient than the traditional TL and UL formulations.The rigidity of lower“fibers”is larger than that of upper“fibers”in the quadruplex unit.With the increase of the self-stress coefficient,the tensegrity unit becomes stiffer,and this is more obvious when the structure is under compression than under tension.Compared with the elasto-plastic response of structure,the self-stress coefficient plays a more important role in elastic responses.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147