面向供应商违约预测的机器学习实践案例设计  

Design of Machine Learning for Supplier Default Prediction

在线阅读下载全文

作  者:栗辉[1] 蔡铮 雒天骄 傅伟康[2] 张博钰 肖成勇 LI Hui;CAI Zheng;LUO Tian-jiao;FU Wei-kang;ZHANG Bo-yu;XIAO Cheng-yong

机构地区:[1]北京科技大学自动化学院,北京100083 [2]北京科技大学计算机与通信工程学院,北京100083

出  处:《金属世界》2020年第2期8-12,共5页Metal World

基  金:教育部产学合作协同育人新工科建设项目“面向智能制造的自动化专业实践教学体系优化”(201802298003);北京科技大学教育教学改革与研究面上项目(JG2017M25)。

摘  要:人工智能技术的快速发展对机器学习人才的需求不断扩大,机器学习课程也成为高校人工智能类专业的核心课程且具有高度实践性,因此将实际项目与理论教学融为一体,才能更好的使学生得到实践锻炼。本文设计了一个基于迁移学习算法的供应商违约预测的实践案例,通过改进基于间隔核密度估算的虚拟样本生成技术,本研究将其他相似供应商预测模型转换成辅助数据的形式。通过基于权重的迁移学习算法(Tr Ada Boost),将生成的辅助数据中的知识迁移至源数据中来。最后通过对比没有使用迁移学习的模型,使用本研究技术架构训练得到的违约预测模型准确率更高、泛化能力更强。学生可通过该案例实践使用机器学习方法解决实际问题的完整过程。

关 键 词:实践案例 人工智能技术 机器学习 迁移学习 辅助数据 虚拟样本 实践锻炼 源数据 

分 类 号:G642[文化科学—高等教育学] TP181[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象