复杂网络下基于路径选择的表示学习方法  被引量:1

Representation Learning Based on Path Selection in Complex Networks

在线阅读下载全文

作  者:刘琼昕 龙航[2] 郑培雄 LIU Qiong-xin;LONG Hang;ZHENG Pei-xiong(Beijing Engineering Applications Research Center on High Volume Language Information Processing and Cloud Computing,Beijing 100081,China;School of Computer Science and Technology,Beijing Institute of Technology,Beijing 100081,China;College of Computer Science and Technology,Harbin Engineering University,Harbin,Heilongjiang 150001,China)

机构地区:[1]北京市海量语言信息处理与云计算应用工程技术研究中心,北京100081 [2]北京理工大学计算机学院,北京100081 [3]哈尔滨工程大学计算机学院,黑龙江哈尔滨150001

出  处:《北京理工大学学报》2020年第3期282-289,共8页Transactions of Beijing Institute of Technology

基  金:国家部委预研项目(315110)。

摘  要:基于路径和基于知识表示的推理是当前知识图谱领域两大主流推理方法,二者的融合算法可以提高知识推理的准确率,但是依旧存在表示学习的时候效率低下、预测准确率低、模型过拟合等若干问题.本文方法针对这些问题提出了基于路径选择的表示学习方法.对路径特征信息进行进一步的过滤和筛选,保留关键路径,在路径信息和知识表示的结合过程中使用平衡参数对缺失路径信息的三元组进行处理.使用公开数据集对模型进行测试,实验表明模型可以有效提高泛化能力和准确率.Path-based and representation-based reasoning are two major methods on knowledge inference.A combination of both algorithms can improve the accuracy of knowledge reasoning.However,there are still some problems,such as inefficiencies in learning,low prediction accuracy and over-fitting of the model.A representation learning method based on path selection was proposed in this paper to further filter the path feature information,to hold the key paths and to use the balance parameter to process the triples of missing path information.In this paper,a public data set was used to test the model.Experiments show that the model can effectively improve the generalization ability and accuracy.

关 键 词:知识图谱 路径选择 表示学习 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象