检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周新城 吴自然[1] 吴桂初[1] ZHOU Xin-cheng;WU Zi-ran;WU Gui-chu(College of Electrical and Electronic Engineering,Wenzhou University,Zhejiang Wenzhou 325000,China)
机构地区:[1]温州大学电气与电子工程学院,浙江温州325000
出 处:《消防科学与技术》2020年第2期278-281,共4页Fire Science and Technology
基 金:浙江省自然科学基金项目(LQ16E070004);温州市科研项目(ZG2019017)。
摘 要:为提高串联故障电弧检测的可靠性,依据标准搭建串联故障电弧检测试验平台,设计数据实时采集装置采集了白炽灯、日光灯、空气压缩机、吹风机4种线性或者非线性负载在正常和故障情况下的电流数据共9 600组。提出利用一维卷积神经网络(1D-CNN)检测线路中电流信号对其分类,判断是否发生故障电弧。经测试该模型对各类负载的平均检测准确率达到100%,损失值在0.000 7以下。将模型导入嵌入式系统,准确度达到96.25%,证明设计的卷积神经网络架构可成功检测出串联故障电弧,降低火灾发生风险。In order to improve the reliability of series fault-arc detection, an experimental platform is built according to the standard, and a real-time data acquisition device is made to collect both faulty and non-faulty current data generated by 4 types of linear or non-linear loads, including incandescent lamps, fluorescent lamps, air compressors and blowers. A one-dimensional convolutional neural network(1D-CNN) is proposed to inspect current signals in the circuit and determine whether fault arcs occur. Testing results show that the average detection accuracy of the model for all kinds of loads reaches 100%, and the loss is below 0.0007. We also transplant the model into an embedded system, and the accuracy reaches 96.25%. It is proven that the designed convolutional neural network structure can successfully detect series fault arcs and reduce the risk of fire.
分 类 号:X924.4[环境科学与工程—安全科学] X946
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222