Riemannian流形中DE算法算子最优特征量的量子渐进估计  

Quantum Asymptotic Estimation of the Optimal Eigenvalues of DE Operators in Riemannian Manifolds

在线阅读下载全文

作  者:王凯光 高岳林[2] Wang Kaiguang;Gao Yuelin(School of Mathematics and Information Science,North Minzu University,Yinchuan 750021;Ningxia Key Laboratory of Intelligent Information and Big Data Processing,North Minzu University,Yinchuan 750021)

机构地区:[1]北方民族大学数学与信息科学学院,银川750021 [2]北方民族大学宁夏智能信息与大数据处理重点实验室,银川750021

出  处:《数学物理学报(A辑)》2020年第1期31-43,共13页Acta Mathematica Scientia

基  金:国家自然科学基金(61561001);北方民族大学重大科研专项资助项目(ZDZX201901);北方民族大学研究生创新项目(YCX19120);宁夏高等教育一流学科建设资助项目(NXYLXK2017B09)。

摘  要:该文主要分析和探讨了差分进化算法(Differential Eveolutionary Algorithm,DE)在Riemannian流形中的几何关系,对P-ε条件下Riemannian流形中的种群个体进行了收敛性分析,得到了迭代个体收敛精度与收敛速度的量子不确定渐进估计,如下式Δv^2 Δxβ^ε^2≥(√(λε)1+…+√(λε)n/2)^2,其中,Δv^2为种群个体的速度分辨率,Δxβ^ε^2为种群个体带有误差的位置分辨率,(λε)i,i=1,2,…,n.从本质上说明了Riemannian流形中迭代个体的局部特征量是不能从收敛精度和收敛速度同时达到算法高效.In this paper,the geometric relations of differential evolution algorithm in Riemannian manifolds are analyzed and discussed.The convergence of populations in Riemannian manifolds with P-εis analyzed.A quantum uncertain asymptotic estimation of the convergence accuracy and convergence speed of the iterative individual is obtained as follows Δv^2 Δxβ^ε^2≥(√(λε)1+…+√(λε)n/2)^2,where,Δv^2 is speed resolution of individual populations,Δxβ^ε^2 is position resolution with errorεof individual populations,(λε)i,i=1,2,…,n.The theorem expression essentially shows that the local eigenvalues of iterated individuals in Riemann manifolds can not achieve high convergent accuracy and convergent speed at the same time.

关 键 词:DE算法 RIEMANNIAN流形 收敛精度 收敛速度 量子不确定渐进估计 

分 类 号:O192[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象