检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵晓涛 孙虎儿[1] 姚巍 Zhao Xiaotao;Sun Huer;Yao Wei(School of Mechanical Engineering,North University of China,Taiyuan 030051,China)
出 处:《机械传动》2020年第4期165-169,176,共6页Journal of Mechanical Transmission
基 金:山西省自然科学基金(201801D121186)。
摘 要:针对在强噪声的干扰下,滚动轴承微弱故障特征难以有效地提取的问题,提出一种基于最大2阶循环平稳盲解卷积(Maximum Second-order Cyclostationarity Blind Deconvolution,CYCBD)和包络谱相结合的微弱故障特征提取方法。首先,由故障特征频率设置合理的循环频率集,使用CY-CBD对含有强噪声的微弱故障冲击信号进行降噪处理,增强信号中的周期性冲击成分;然后,对降噪信号进行Hilbert包络谱分析来识别故障特征频率。通过仿真和实验,结果证明,该方法能有效地提取被强噪声淹没的微弱故障特征。To solve the problem that it is difficult to extract the weak fault features of rolling bearing effectively under the interference of strong background noise,a method of extracting the weak fault features based on the combination of maximum second-order cyclostationary blind deconvolution(CYCBD) and envelope spectrum is proposed.Firstly,a reasonable cycle frequency set is set by the fault characteristic frequency,and CYCBD is used to reduce the noise of weak fault impulse signal with strong noise,so as to enhance the periodic impulse component in the signal.Then,the noise reduction signal is analyzed by Hilbert envelope spectrum to identify the fault characteristic frequency.The simulation and experimental results show that the method can effectively extract the weak fault features submerged by strong noise.
关 键 词:滚动轴承 最大2阶循环平稳盲解卷积 微弱故障 特征提取
分 类 号:TN911.7[电子电信—通信与信息系统] TH133.33[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.52