检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金一鑫 黄敏[1] JIN Yi-xin;HUANG Min(Department of philosophy,Sun Yat-sen University,Guangzhou 510275,China)
机构地区:[1]中山大学哲学系,广州510275
出 处:《科学技术哲学研究》2020年第2期76-81,共6页Studies in Philosophy of Science and Technology
基 金:国家社科后期资助项目“意向性视野中的意义理论”(16FZX032)。
摘 要:在关于戴维森的真理理论与意义理论的讨论中,真理理论对于意义理论是否充分一直有很大争论。这一争论的背后,涉及意义是否能够外延化的问题。意义的内涵主义者认为,真理理论对于意义理论来说并不充分,对意义进行外延主义解释行不通。戴维森对真理理论与意义理论的处理,表面上还存在矛盾:一方面,他认为真理理论对于理解意义来说是充分的;另一方面,这种充分性不能脱离意义而成立,作为内涵实体的意义无法在意义理论中消解。其实,这种张力体现了戴维森意义理论的巧妙之处,如果对真理与意义做出合理的解读,那么这一矛盾将会消失:真理和意义不是语词所指称的对象,而是在语言的理解与使用中显现出来的;并且二者是一体两面的关系。In the discussion of Davidson’s theory of truth and theory of meaning,there has been a controversy about whether a theory of truth is sufficient for a theory of meaning.Behind this debate is the question of whether meaning can be extensionalised.Philosophers who are in favor of intensionalism believe that Davidson’s explanation of meaning fails and that a theory of truth is not sufficient for a theory of meaning.There seems to be a contradiction in Davidson’s project.On the one hand,he believes that a theory of truth is sufficient for understanding meaning.On the other hand,meaning as an intentional entity cannot be resolved in the theory of meaning and the theory of truth.However,if we explain truth and meaning in the following way,the contradiction will disappear:Truth and meaning are not objects of language,but are manifested in the understanding and use of language as two sides of one coin.
分 类 号:N02[自然科学总论—科学技术哲学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229