检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵博文 王灵矫[1] 郭华[1] ZHAO Bowen;WANG Lingjiao;GUO Hua(College of Information Engineering,Xiangtan University,Xiangtan,Hunan 411105,China)
出 处:《计算机工程》2020年第4期91-96,共6页Computer Engineering
基 金:国家自然科学基金(61771414)。
摘 要:朴素贝叶斯(NB)算法应用于文本分类时具有简单性和高效性,但算法中属性独立性与重要性一致的假设,使其在精确度方面存在瓶颈.针对该问题,提出一种基于泊松分布的特征加权NB文本分类算法.结合泊松分布模型和NB算法,将泊松随机变量引入特征词权重,在此基础上定义信息增益率对文本特征词加权,削弱传统算法属性独立性假设造成的影响.在20-newsgroups数据集上的实验结果表明,与传统NB算法及其改进算法RwC-MNB和CFSNB相比,该算法可使文本分类的准确率、召回率和F1值得到提升,并且执行效率高于K-最近邻算法和支持向量机算法.Naive Bayes(NB)algorithm is simple and efficient when applied to text classification,but it has a bottleneck in accuracy due to the intrinsic assumption that attribute independence and attribute importance are consistent.To solve this problem,this paper proposes a feature-weighted NB text classification algorithm based on Poisson distribution.The algorithm combines the Poisson distribution model with the NB algorithm,and the Poisson random variable is introduced into the weight of feature words.On this basis,the Information Gain Ratio(IGR)is defined to weigh the feature words of texts,and thus the effects of the attribute independence assumption of traditional algorithms can be reduced.Experimental results on the 20-newsgroups data set show that,compared with NB algorithm and its improved algorithms R W,C-MNB and CFSNB,this algorithm can improve the accuracy rate,recall rate and F 1value of text classification.Meanwhile,its execution efficiency is higher than K-Nearest Neighbor(KNN)algorithm and Support Vector Machine(SVM)algorithm.
关 键 词:文本分类 朴素贝叶斯算法 泊松分布 信息增益率 特征词权重
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.247.168