检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:甘海龙[1] 郭容宽[1] Gan Hailong;Guo Rongkuan(Guangxi Technological College of Machinery and Electricity,Nanning Guangxi 530007,China)
出 处:《科技通报》2019年第12期144-149,154,共7页Bulletin of Science and Technology
基 金:2017年度广西高校中青年教师基础能力提升项目(项目编号:2017KY075)的研究成果。
摘 要:混凝土碳化深度是钢筋混凝土结构耐久性评估的重要参数,影响混凝土碳化深度的因素主要有水灰比、水泥用量、混凝土抗压强度、碳化时间、水泥强度、温度与湿度。基于以上7个参数,并结合BP神经网络较好的预测性,以及主成分分析(PCA)能消除自变量间的多重共线性和降低输入数据维度的特点,建立了基于PCA-BP神经网络的混凝土碳化深度预测模型。以30组实测数据为例,对7个影响因素进行主成分分析,最终降为4个主成分,进而将其作为BP神经网络的输入因子,对混凝土碳化深度进行了预测。结果表明:PCA-BP神经网络预测误差低,实现了对混凝土碳化深度的较准确预测,PCA-BP神经网络模型为混凝土碳化深度预测提供了一种科学、可靠的方法。The carbonation depth of concrete is an important parameter to evaluate the durability of reinforced concrete structure.The main factors affecting the carbonation depth of reinforced concrete are water-cement ratio,cement content,compressive strength of concrete,carbonation time,cement strength,temperature and humidity.Based on the above seven parameters and combining with BP neural network,the characteristics of multiple collinearity among independent variables and the dimension of input data can be eliminated by principal component analysis(PCAs).The prediction model of concrete carbonation depth based on PCA-BP neural network is established.Taking 30 groups of measured data as an example,7 influencing factors were analyzed by principal component analysis and finally reduced to 4 main factors.The carbonation depth of concrete was predicted by using the component as the input factor of BP neural network.The results show that the prediction error of the PCA-BP neural network is low,and the PCA-BP neural network model provides a scientific and reliable method for predicting the carbonation depth of concrete.
分 类 号:TU528.517[建筑科学—建筑技术科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.186.244